• Title/Summary/Keyword: Maximum a Posterior

Search Result 266, Processing Time 0.028 seconds

Finite Element Analysis of Stress Distribution on Telescopic System for Mandibular Implant Supported Overdenture (이중관 구조 하악 임플랜트 피개의치의 응력 분포에 관한 유한요소법적 분석)

  • Oh, Jung-Ran;Woo, Yi-Hyung;Lee, Sung-Bok;Bak, Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.359-371
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the stress distribution in mandibular implant overdentures with telescopic crowns compared to bar attachment. Material and methods: Three-dimensional finite element models consisting of the mandibular bone, 4 implants, and primary bar-splinted superstructure or secondary splinted superstructure with telescopic crowns were created. Vertical and oblique loads were directed onto the occlusal areas of the superstructures to simulate the maximal intercuspal contacts and working contacts such as group function occlusion. Maximum stress and stress distribution were analysed in mandibular bone, implant abutments, and superstructures. Results: 1. In comparison of von Mises stress on mandibular bone, telescopic overdenture had a little lower stress values in vertical load and working side load except oblique load. In the mandible, the telescopic overdenture distributed more uniform stress than the bar overdenture. 2. In comparison of von Mises stress on implant abutments, telescopic overdenture had much lower stress values in all load conditions. In implant abutments, the telescopic overdenture distributed stress similar to the bar overdenture. Stress was concentrated on the distal surfaces of the posterior implant abutments in both mandibular overdentures. 3. In comparison of von Mises stress on superstructures, the telescopic overdenture had much more stress values in all load conditions. However, the telescopic overdenture distributed more uniform stress on superstructure than the bar overdenture. In the bar overdenture, stress was concentrated on each cental area of bar structures and connected area between implant abutments and bar structures. Conclusion: In the results of this study, the telescopic overdenture had lower stress values than the bar overdenture in mandibular bone and implant abutments, but more stress values in superstructures. However, if optimal material was selected in making superstructures, the telescopic overdenture was compared to the bar overdenture in stress distribution.

New Technique for the Reconstruction of Both Anteromedial & Posterolateral Bundles of ACL (전방십자인대의 전내측 다발 및 후외측 다발을 각각 재건하는 새로운 수술 수기)

  • Ha Chul-Won;Awe Soo-Ik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.6 no.2
    • /
    • pp.195-199
    • /
    • 2002
  • This article is to report a new technique for reconstruction of the anteromedial and posterolateral bundles of anterior cruciate ligament by separate tensioning and fixation of the each bundle. Method : Tibial and femoral tunnels were made with conventional technique of anterior cruciate ligament reconstruction. Tibial tunnel was enlarged $5\~7$ mm in anterior-posterior direction to make oval it in cross section. When preparing the Achilles tendon allograft, bone plug portion was trimmed as the conventional technique. The tendinous portion was trimmed as two separate bundles by dividing the tendinous portion longitudinally, so the graft is shaped like 'Y'. The bone plug portion of allograft was inserted into the femoral tunnel and fixed with absorbable cross pins. Two ligamentous portionss of the distal part of the grafts were tensioned separately at the external orifice. Anteromedial bundle was fastened under maximum tension with the knee flexed 90 degrees by post-tie method. The posterolateral bundle was fixed by the same technique with the knee in full extension. Then, an absorbable interference screw was inserted between the two bundles upto the upper end of the tibial tunnel, to get more initial rigidity of the reconstructed graft as well as to locate the two bundles in more anatomic position.

  • PDF

A Study of Energy Dependency in Intensity Modulated Radiation Therapy of Lung Cancer (폐암환자의 세기조절방사선치료에서 에너지에 따른 선량분포 특성 비교)

  • Kim, Sung-Kyu;Kim, Myung-Se;Yun, Sang-Mo
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2008
  • PTV considered for the energy, dose distribution exposed to lung and spinal cord, and the characteristic of DVH(Dose Volume Histogram) were compared and investigated by planning the intensity modulated radiation therapy (IMRT) using the photon energies of 6 MV and 10 MV according to tumor location like as the anterior, middle, and posterior regions of lung, and the mediastinum region in lung cancer patients. Our institution installed the linear accelerator (Varian 21 EX-s, USA) equipped with 120 multileaf collimator for lung cancer patients, which is producing the photon energies of 6 MV and 10 MV, and radiation therapy planning was performed with ECLIPSE system (Varian, SomaVision 6.5, USA), which support inverse treatment planning. The tomographic images of 3 mm slice thickness for lung cancer patients were acquired using planning CT, and acquired tomographic images were sent to the Varis system, and then treatment planning was performed in the ECLIPSE system. The radiation treatment planning of the IMRT was processed from various angles according to the regions of the tumor, and using various beam lines according to the size and location of the tumor. The investigation of the characteristic of dose distributions for the energy of 6 MV and 10 MV according to tumor locations in lung cancer patients resulted that the maximum dose of 10 MV energy was 1.2% less than that of 6 MV energy without depending on the tumor location of lung cancer, and the reduction effects of MU were occurred from 10 to 25 MU. Radiation dose exposed to the lung satisfied the less 30% of V20, however radiation dose in 6 MV energy was from 0.1% to 0.5% less than that in 10 MV energy. Radiation dose exposed to the spinal cord for 6 MV energy was from 0.6% to 2.1% less than that for 6 MV energy.

  • PDF

AN ANATOMICAL STUDY OF THE MANDIBULAR RAMUS IN KOREAN PATIENTS WITH DENTOFACIAL DEFORMITY (한국인 악안면 기형환자의 하악골 상행지에 관한 해부학적 연구)

  • Kim, Gi-Jung;Lee, Eui-Wung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.3
    • /
    • pp.193-203
    • /
    • 2001
  • Orthognathic surgery of the mandibular prognathism and the retrognathism is tend to be performed on the mandibular ramus to prevent inferor alveolar nerve injuries. The purpose of this study is to find a safe and accurate reference point on mandibular ramus for orthognathic surgery by comparative anatomical study of dentofacial deformity patients. We use 38 Korean Cadavers with normal occlusion(Group 1), 3-dimensional simulation of computerized tomogram of 23 patients with retrognathism (Group 2), 27 patients with mandibular prognathism (Group 3). Following results are obtained : 1. The maximum thickness of the mandibular ramus is $8.78{\pm}1.15mm$ for Group 2, $7.61{\pm}1.26mm$ for Group 1, $6.95{\pm}0.82mm$ for Group3 respectively (P=0001). The minimum thickness is $5.51{\pm}1.08mm$ for Group 1, $5.06{\pm}0.40mm$ for Group 2, $4.56{\pm}0.78mm$ for Group3, respectively (p=0.0001). But, the thickness at the level of 5mm above the lingular is $0.78{\pm}0.65mm$ for Group 2, $5.63{\pm}1.28mm$ for Group 1, $5.32{\pm}0.91mm$ for Group 3, respectively. There is no significant difference between these groups(P=0.0510). 2. The horizontal location from the midwaist point to lingular is $0.18{\pm}1.57mm$ for Group 1, $0.69{\pm}1.33mm$ for Group 2, $0.66{\pm}1.66mm$ for Group 3, and there is no significant difference between these groups(p=0.0835). But the vertical location from the midwaist point to lingular is $1.45{\pm}2.64mm$ for Group 1, $0.63{\pm}1.44mm$ for Group 2, $0.34{\pm}1.81mm$ for Group 3, and there is significant difference between these groups(p=0.0030). 3. The horizontal location from the midwaist point to mandibular foramen is $0.29{\pm}1.75mm$ for Group 1, $0.63{\pm}1.44mm$ for Group 2, $0.34{\pm}1.81mm$ for Group 3, and there is no significant difference between these groups(p=0.5403). But the vertical location from the midwaist point to mandibular foramen is $-3.33{\pm}4.43mm$ for Group1, $-4.79{\pm}2.26mm$ for Group 2, $-6.06{\pm}2.99mm$ for Group 3, and there is significant difference between these groups(P=0.0001). 4. The horizontal length from the disto-buccal cusp tip of mandibular second molar to lingula is $30.97{\pm}4.17mm$ for Group 3, $28.29{\pm}2.65mm$ for Group 1, $25.48{\pm}0.77mm$ for Group 2 (p=0.0000), and also vertical length is $7.72{\pm}3.22mm$ for Group 3, $6.38{\pm}1.83mm$ for Group 1, $5.89{\pm}2.30mm$ for Group 2 (P=0.0014). 5. The location of lingular is 0.50 from anterior border of mandibular ramus in all groups, if it assumed the length from anterior border to posterior border is 1. And it is almost 0.33 from the sigmoid notch, if it assumed the length from sigmoid notch to antegonial notch is 1. 6. In Group 1, Antilingular prominence is located on ($1.12{\pm}1.43mm,\;4.01{\pm}2.36mm$) from the midwaist point, and there is no correlation between antilingular prominence and lingular, mandibular foramen.

  • PDF

The Study of Shielding Effect on Ovoids of Three Different Gynecological Applicator Sets in microSelectron-HDR System (microSelectron-HDR System에서 부인암 강내조사에 쓰이는 세 가지 Applicator Set들의 Ovoids에 대한 차폐효과 연구)

  • Cho, Young-K.;Park, Sung-Y.;Choi, Jin-H.;Kim, Hung-J.;Kim, Woo-C.;Loh, John-J.K.;Kim, Joo-Y.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • There are three different types of gynecological applicator sets available in microSelectron-high dose-rate(HDR) System by Nucletron; standard applicator set(SAS), standard shielded applicator set(SSAS), and Fletcher-Williamson applicator set(FWAS). Shielding effect of a SAS without shielding material was compared with that of a SSAS with shielding material made of stainless steel(density ${\varrho}=8,000kg/m^3$) at the top and bottom of each ovoid, and of a FWAS with shielding material made of tungsten alloy(density ${\varrho}=14,000kg/m^3$ at the top and bottom of each ovoid. The shielding effects to the rectum and bladder of these two shielded applicator sets were to be measured at reference points with an ion chamber and specially designed supporting system for applicator ovoids inside of the computerized 3-dimensional water phantom. To determine the middle point of two ovoids the measurement was performed with the reference tip of ion chamber placed at the same level and at the middle point from the two ovoids, while scanning the dose with the ion chamber on each side of ovoids. The doses to the reference points of rectum were measured at 20(Rl), 25(R2), 30(R3), 40(R4), 50(R5), and 60(R6) mm located posteriorly on the vertical line drawn from M5(the middle dwell position of ovoid), and the doses to the bladder were measured at 20(Bl), 30(B2), 40(B3), 50(B4), and 60(B5) mm located anteriorly on the vertical line drawn from M5. The same technique was employed to measure the doses on each reference point of both SSAS and FWAS. The differences of measured rectal doses at 25 mm(R2) and 30 mm(R3) between SAS and SSAS were 8.0 % and 6.0 %: 25.0% and 23.0 % between SAS and FWAS. The differences of measured bladder doses at 20 mm(Bl) and 30 mm(B2) between SAS and SSAS were 8.0 % and 3.0 %: 23.0 % and 17.0 % between SAS and FWAS. The maximum shielding effects to the rectum and bladder of SSAS were 8.0 % and 8.0 %, whereas those of FWAS were 26.0 % and 23.0 %, respectively. These results led to the conclusion that FWAS has much better shielding effect than SSAS does, and when SSAS and FWAS were used for gynecological intracavitary brachytherapy in microSelectron-HDR system, the dose to the rectum and bladder was significantly reduced to optimize the treatment outcome and to lower the complication rates in the rectum and bladder.

  • PDF

A three-dimensional finite-element analysis of influence of splinting in mandibular posterior implants (스프린팅이 하악 구치부 임플랜트 보철물의 응력분산에 미치는 영향에 관한 삼차원 유한요소분석 연구)

  • Baik, Sang-Hyun;Jang, Ik-Tae;Kim, Sung-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Statement of problem: Over the past two decades, implant supported fixed prosthesis have been widely used. However, there are few studies conducted systematically and intensively on the splinting effect of implant systems in mandible. Purpose: The purpose of this study was to investigate the changes in stress distributions in the mandibular implants with splinting or non-splinting crowns by performing finite element analysis. Materials and methods: Cortical and cancellous bone were modeled as homogeneous, transversely isotropic, linearly elastic. Perfect bonding was assumed at all interfaces. Implant models were classified as follows. Group 1: $Br{{\aa}}nemark$ length 8.5mm 13mm splinting type Group 2: $Br{{\aa}}nemark$ length 8.5mm 13mm Non-splinting type Group 3: ITI length 8.5mm 13mm splinting type Group 4: ITI length 8.5mm 13mm Non-splinting type An load of 100N was applied vertically and horizontally. Stress levels were calculated using von Mises stresses values. Results: 1. The stress distribution and maximum von Mises stress of two-length implants (8.5mm, 13mm) was similar. 2. The stress of vertical load concentrated on mesial side of implant while the stress of horizontal load was distributed on both side of implant. 3. Stress of internal connection type was spreading through abutment screw but the stress of external connection type was concentrated on cortical bone level. 4. Degree of stress reduction was higher in the external connection type than in the internal connection type.