• Title/Summary/Keyword: Maximum Strength

Search Result 3,754, Processing Time 0.029 seconds

Performance Evaluation of Long Span Bridge Columns Strengthened with High-Performance Glass Fiber (고성능 유리섬유로 보강된 해상장대교량 교각의 보강성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Jae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • Researches and studies which have been conducted so far on external confinement of long span concrete columns have mainly concentrated on concentric loading. But, long span bridge concrete columns over the sea are mainly subjected to concentrated axial load, and at the same time lange amount of moment by eccentric load. This paper experimentally investigates the performance of externally confined high-strength concrete columns subjected to loading mechanism and evaluates the effectiveness of two confinement materials carbon fibre and high performance glass fibre. Twelve short columns with the same dimensions were cast and tested Six columns were reinforced with hoop bars, the remaining six columns were reinforced with spiral bars and wrapped with three layers of carbon failure and high performance glass FRP sheets. Test variables considered were the shape of internal reinforcement and strengthening materials according to loading location. The experimental results showed that eccentric load could obviously lower down the maximum failure load of FRP-confined concrete columns, compared with the columns under concentric load. And compared with the carbon FRP-confined reinforced concrete columns, high performance glass FRP-confined columns displayed a higher load capacity and ductility, when tested both concentrically and eccentrically.

Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 1. Preparation and Characterization of Porous Affinity Membranes (키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 1. 다공성 친화 막의 제조와 특성 평가)

  • Youm Kyung-Ho;Yuk Yeong-Jae
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2006
  • Porous chitosan and chitin membranes were prepared by using silica particles as porogen. Membrane preparation was achieved via the following three steps: (1) chitosan film formation by casting an chitosan solution containing silica particles, (2) preparation of porous chitosan membrane by dissolving the silica particles by immersing the film into an alkaline solution and (3) preparation of porous chitin membrane by acetylation of chitosan membrane with acetic anhydride. The optimum preparation conditions which could provide a chitosan and chitin membranes with good mechanical strength and adequate pure water flux were determined. To allow protein affinity, a reactive dye (Cibacron Blue 3GA) was immobilized on porous chitosan membrane. Binding capacities of affinity chitosan and chitin membranes for protein and enzyme were determined by the batch adsorption experiments of BSA protein and lysozyme enzyme. The maximum binding capacity of affinity chitosan membrane for BSA protein is about 22 mg/mL, and that of affinity chitin membrane for lysozyme enzyme is about 26 mg/mL. Those binding capacities are about $several{\sim}several$ tens times larger than those of chitosan and chitin-based hydrogel beads. Those results suggest that the porous chitosan and chitin membranes are suitable in affinity filtration chromatography for large scale separation of proteins.

Examination of the Relationship between Average Particle Size and Shear Strength of Granite-derived Weathered Soils through 2-D Distinct-element Method (이차원 개별요소 수치해석을 통한 화강풍화토의 평균입자크기와 전단강도의 관계 규명)

  • Kim, Seon-Uk;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.77-86
    • /
    • 2012
  • We have carried out a series of numerical experiments to study the effect of average particle size on the mechanical properties of granite-derived weathered soils. A distinct-element method was adopted to study the changes in macro-scale mechanical properties with particle size and maximum-to-minimum particle size ratio. The numerical soil specimen with cohesion values of 0.25 MPa and internal friction angle of 29 degrees was prepared for reference. While keeping the porosity values constant, we varied particle size and size distribution to study how cohesion and internal friction angle changes. The experimental results show that the values of cohesion apparently decrease with increasing particle size. Changes in the values of internal friction angles are small, but there is a trend of increase in internal friction angle as the average particle size increases. This study demonstrates a possibility that the results of numerical experiments of this type may be used for rapid estimation of mechanical properties of granite-derived weathered soils. For example, when mechanical properties obtained through in situ tests and particle size data obtained through lab analysis are available for a site, it is expected that the mechanical properties of weathered granite soils with varying degrees of weathering (thus, varying particle size) may be estimated rapidly only with particle size data for that site.

Behavior of Reinforcement Ratio on Concrete Beams Reinforced with Lab Spliced GFRP Bar (GFRP 보강근으로 겹이음된 콘크리트 보의 보강비에 따른 거동특성)

  • Choi, Yun Cheul;Park, Keum Sung;Choi, Hyun Ki;Choi, Chang Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2011
  • The use of glass-fiber-reinforced polymer (GFRP) bars in reinforced concrete (RC) structures has emerged as an alternative to traditional RC due to the corrosion of steel in aggressive environments. Although the number of analytical and experimental studies on RC beams with GFRP reinforcement has increased in recent decades, it is still lower than the number of such studies related to steel RC structures. This paper presents the experimental moment deflection relations of GFRP reinforced beam which are spliced. Test variables were different reinforcement ratio and cover thickness of GFRP rebars. Seven concrete beams reinforced with steel GFRP re-Bars were tested. All the specimens had a span of 4000mm, provided with 12.7mm nominal diameter steel and GFRP rebars. All test specimens were tested under 2-point loads so that the spliced region be subject to constant moment. The experimental results show that the ultimate moment capacity of beam increasing of the reinforcement ratio. Failure mode of these specimens was sensitively vary according to the reinforcement ratio. The change of beam effective depth, which was caused by cover thickness variation, controlled the maximum strength and deflection because of cover spalling in tension face.

Nonlinear Behavior of Seismic-Strengthened Domestic School Building (국내 기존 학교건축물의 내진보강 후 비선형 거동특성)

  • Ryu, Seung Hyun;Yun, Hyun Do;Kim, Sun Woo;Lee, Kang Seok;Kim, Yong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.243-253
    • /
    • 2011
  • This paper describes an analytical study on seismic performance of domestic reinforced concrete (RC) school building not designed by seismic provision. The seismic index and the seismic performance of the building were evaluated through Japanese standard and Midas Gen, respectively. Seismic index (Is) of the RC school buildings in the X-direction is below 0.4. Based on the seismic index, for seismic-strengthening the building, infill shear wall or steel brace with a capacity of 1,300 kN was used. According to nonlinear static analysis results, the contribution of the seismic-strengthening to the shear resistance of the school building was measured to be greater than 30%. However, as expected, shear strength of school building strengthened with infill wall dropt rapidly after peak load and much narrower ductile behavior range was observed compared to steel brace strengthened building. Also, the building strengthened with steel brace showed 30% larger spectral displacement than that strengthened with infill shear wall. In nonlinear dynamic analysis, for the time history analysis, the maximum displacement showed tendency to decrease as amount of reinforcement increased, regardless of strengthening method. It was recommended that variable soil properties and earthquake record should be considered for improving seismic performance of buildings in seismic zone.

Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details (진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가)

  • Baek, Eun-Rim;Kim, Kyung-Min;Cheon, Ju-Hyun;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • In this paper, the shake table test for the masonry infilled reinforced concrete frame with non-seismic details was carried out in order to evaluate its dynamic behaviour and damage under seismic condition. The tested specimens were the RC frame and the masonry infilled RC frame and the dynamic characteristics, such as a resonant period, acceleration response, displacement response and base shear force response, were compared between them. As a result of the shake table test, RC frame specimen had flexural cracks at the top and bottom of the column and shear cracks at the joints. In the case of masonry infilled RC frame, the damage of the frame was relatively minor but the sliding cracks and diagonal shear cracks on the masonry wall were severe at the final excitation. The resonant period of infilled RC frame specimen was shorter than that of the RC frame specimen because the masonry infill contributed to increase the stiffness. The maximum displacement response of the infilled RC frame specimen was decreased by about 20% than the RC frame specimen. It was analyzed that the masonry infill wall applied in this study contributed to increase the lateral strength of the RC frame with non - seismic detail by about 2.2 times and the stiffness by about 1.6 times.

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

Dyeing Properties and Color of Silk Fabrics Dyed with Safflower Yellow Dye (홍화 황색소 견섬유에 대한 염색성과 색상)

  • Shin, Youn-Sook;Son, Kyung-Hee;Yoo, Dong-Il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.6
    • /
    • pp.928-934
    • /
    • 2008
  • The objective of this study is to investigate the dyeing properties of safflower yellow dye on silk for the standardization of dyeing process and color reproducibility. Yellow colorants were water-extracted from safflower petals, concentrated, and freeze-dried to obtain colorants powder. The effects of dye concentration, dyeing temperature, and pH of dye bath were studied in terms of dye uptake and shade. Fastness to dry cleaning and light was evaluated. Dye uptake increased with raising temperature and brighter and more vivid yellow shade was obtained when dyed at $30^{\circ}C$. As colorants concentration increased, dye uptake increased progressively and the shade got darker and deeper. Maximum color strength was obtained at pH 3.5. It was speculated that the adsorption of colorants seemed to occur mainly by hydrogen bonding and physical force at pH 5.5 and by ionic bonding as well as hydrogen bonding below isoelectric point(pH 3.8-4.0). The results of reproducibility test showed acceptable color difference in the range of $1.11{\sim}2.01$. Washing fastness was fairly good as 4/5 rating, while light fastness was 2/3 rating.

A Study on Projection Image Restoration by Adaptive Filtering (적응적 필터링에 의한 투사영상 복원에 관한 연구)

  • 김정희;김광익
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 1998
  • This paper describes a filtering algorithm which employs apriori information of SPECT lesion detectability potential for the filtering of degraded projection images prior to the backprojection reconstruction. In this algorithm, we determined m minimum detectable lesion sized(MDLSs) by assuming m object contrasts uniformly-chosen in the range of 0.0-1.0, based on a signal/noise model which provides the capability potential of SPECT in terms of physical factors. A best estimate of given projection image is attempted as a weighted combination of the subimages from m optimal filters whose design is focused on maximizing the local S/N ratios for the MDLS-lesions. These subimages show relatively larger resolution recovery effect and relatively smaller noise reduction effect with the decreased MDLS, and the weighting on each subimage was controlled by the difference between the subimage and the maximum-resolution-recovered projection image. The proposed filtering algoritym was tested on SPECT image reconstruction problems, and produced good results. Especially, this algorithm showed the adaptive effect that approximately averages the filter outputs in homogeneous areas and sensitively depends on each filter strength on contrast preserving/enhancing in textured lesion areas of the reconstructed image.

  • PDF

Hardware Design of High Performance HEVC Deblocking Filter for UHD Videos (UHD 영상을 위한 고성능 HEVC 디블록킹 필터 설계)

  • Park, Jaeha;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.178-184
    • /
    • 2015
  • This paper proposes a hardware architecture for high performance Deblocking filter(DBF) in High Efficiency Video Coding for UHD(Ultra High Definition) videos. This proposed hardware architecture which has less processing time has a 4-stage pipelined architecture with two filters and parallel boundary strength module. Also, the proposed filter can be used in low-voltage design by using clock gating architecture in 4-stage pipeline. The segmented memory architecture solves the hazard issue that arises when single port SRAM is accessed. The proposed order of filtering shortens the delay time that arises when storing data into the single port SRAM at the pre-processing stage. The DBF hardware proposed in this paper was designed with Verilog HDL, and was implemented with 22k logic gates as a result of synthesis using TSMC 0.18um CMOS standard cell library. Furthermore, the dynamic frequency can process UHD 8k($7680{\times}4320$) samples@60fps using a frequency of 150MHz with an 8K resolution and maximum dynamic frequency is 285MHz. Result from analysis shows that the proposed DBF hardware architecture operation cycle for one process coding unit has improved by 32% over the previous one.