• 제목/요약/키워드: Maximum Power Extraction

검색결과 81건 처리시간 0.031초

반응표면분석에 의한 늙은 호박 추출물의 추출조건 최적화 (Optimization of Extraction Conditions for Extracts from Cucurbita moschata Duch. by Response Surface Methodology)

  • 이혜진;도정룡;권중호;김현구
    • 한국식품영양과학회지
    • /
    • 제39권3호
    • /
    • pp.449-454
    • /
    • 2010
  • 늙은 호박을 최적의 추출조건에서 추출물을 얻고자 반응표면분석을 이용하여 추출조건을 최적화하였다. 중심합성 계획에 따라 요인변수로 마이크로웨이브 에너지(30~150 watt), 에탄올 농도(0~100%) 및 추출시간(1~9분)을 달리하고, 전자공여작용, tyrosinase 저해효과, SOD 유사활성 및 총 폴리페놀 함량을 종속변수로 하여 추출하였다. 추출 결과 종속변수에 따라 회귀식의 $R^2$이 각각 0.7035, 0.7748, 0.9496 및 0.9219로 나타나 SOD 유사활성과 총 폴리페놀 함량의 유의성이 인정되었다. 종속변수인 전자공여작용, tyrosinase 저해효과, SOD 유사활성 및 총 폴리페놀 함량 모두 마이크로웨이브 에너지의 영향이 가장 큰 것으로 나타났다. 네 가지 종속변수의 극대값을 얻기 위한 최적 추출조건의 범위는 4차원 반응표면분석을 superimposing하여 얻었다. 그 결과 최적 추출조건이 마이크로웨이브 에너지 72~144 watt, 에탄올 농도 0~38%, 추출시간 6~9분의 범위를 나타내었다.

2단계 침출 과정에서 발생되는 비산회로부터 초음파 활용하여 이트륨과 네오디뮴의 동시 추출 (Simultaneous Extraction of Yttrium and Neodymium from Fly Ash by Two-Step Leaching Process with Aid of Ultrasonic Wave)

  • Kim, Jae-Kwan;Park, Seok-Un
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.153-159
    • /
    • 2021
  • A two-step process for increasing the leaching efficiency of yttrium and neodymium from coal fly ash were investigated at solid loadings of 5.0 g ash ~1,000 g ash/l of 1.0 N~10.0 N H2SO4, temperature ranging from 30℃ to 90℃, ultrasonic leaching time of 1~10 hours, and ultrasonic power of 25~200 W. The yttrium and neodymium from coal fly ash were effectively leached into ion phases by step change of the first conventional dissolution at room temperature and then the second heating process with the aid of ultrasonic wave, and maximum leaching efficiency of yttrium and neodymium obtained were 66 % and 63 %, respectively. The activation energies for the leaching reaction of yttrium and neodymium at second heating process dependent on leaching time and temperature were derived to be 41.540 kJmol-1 and 507.92 kJmol-1, respectively. The optimum conditions for the maximum leaching of yttrium and neodymium were found to be the solid loading of 250 g ash/l of H2SO4, solvent concentration of 2.0 N H2SO4, and second step process of temperatures of 30℃ for 3 hours and then 90℃ for 4 hours with ultrasonic intensity of 100 W.

포도씨 추출물의 총 카테킨 함량과 전자공여능에 대한 마이크로웨이브 추출조건 최적화 (Optimization of Microwave-assisted Extraction Conditions for Total Catechin and Electron Donating Ability of Grape Seed Extracts)

  • 이은진;김정숙;권중호
    • 한국식품저장유통학회지
    • /
    • 제15권6호
    • /
    • pp.840-846
    • /
    • 2008
  • 포도씨의 총 카테킨 함량과 추출물의 항산화성을 극대화하기 위한 마이크로웨이브 추출조건의 최적화를 시도하였다. 중심합성계획에 따라 추출조건(microwave power $0{\sim}120\;W$, 에탄올 농도 $0{\sim}100%$, 추출시간 $1{\sim}5\;min$)을 설계하고, 종속변수로서 추출물의 수율, 카테킨 함량 및 전자공여능을 회귀 분석함으로써 최적 추출조건을 예측하였다. 모든 회귀식의 $R^2$는 0.9 이상으로 1% 수준에서 유의성이 인정되었다. 총 카테킨 함량의 최대 추출 값은 434.16 mg%로 예측되었으며, 추출조건은 microwave power 122.76 W, 에탄올 농도 42.88%, 추출시간 4.67 min으로 나타났다. 추출물에 대한 세 가지 종속변수의 극대 값을 얻기 위한 추출조건 범위는 $75{\sim}150\;W$, $40{\sim}60%$$3.5{\sim}5.0\;min$이었다. 이상의 예측 값(총 추출수율 6.72%, 총 카테킨 함량 408.65mg%, 전자공여능 83.33%)은 실제 값과 유의적인 차이가 없었으며, 최적화된 마이크로웨이브 추출법(112.5 W, 50% 에탄올, 4.2분)은 현행추출법 (80% 에탄올, $60^{\circ}C$, 3시간, 150 rpm)에 비해 추출효율이 우수하였다.

Optimization of the Extraction of Polyphenols and Flavonoids from Argania spinosa Leaves using Response Surface Methodology

  • Rajaa Moundib;Hamadou Sita;Ismail Guenaou;Fouzia Hmimid
    • Natural Product Sciences
    • /
    • 제29권2호
    • /
    • pp.83-90
    • /
    • 2023
  • To our knowledge, this is the first study aiming to optimize the extraction conditions of total phenolic compounds (TPC) and total flavonoids contents (TFC) from Argania spinosa leaves using Response Surface Methodology (RSM) with a Box-Behnken design (BBD). The optimal conditions obtained were 5% (w/v) solvent-to-solid ratio, 72.33% ethanol concentration, and 10h ours as an extraction time, which resulted in an extract with maximum TPC (131.63 mg GAE/g dw) and TFC (10.66 mg QE/g dw). Under the optimal extraction conditions, the antioxidant activity of the extracts of leaves of argan tree showed a moderate antiradical capacity of DPPH (IC50 = 0,130 mg/mL) and ABTS (IC50 = 0.198 mg/mL). However, the leaves of argan tree showed a very interesting reducing power of Iron (IC50 = 0.448 mg/ml) which is similar to that of the ascorbic acid (IC50 = 0.371 mg/mL).

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

배압터빈을 사용하는 열병합발전소의 열 회수 온도에 따른 성능특성 분석 (Performance Analysis on CHP Plant using Back Pressure Turbine according to Return Temperature Variation)

  • 임신영;이종준;전영신;김형택
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.26-33
    • /
    • 2016
  • Combined heat and power (CHP) system is one of the power generation system which can generate both electricity and heat. Generally, mid-size and big-size CHP plant in Korea generate electricity from gas turbine and steam turbine, then supply heat from exhaust gas. Actually, CHP can supply heat using district heater which is located at low pressure turbine exit or inlet. When the district heater locates after low pressure turbine, which called back pressure type turbine, there need neither condenser nor mode change operating control logic. When the district heater locates in front of low pressure turbine or uses low pressure turbine extraction steam flow, which calls condensing type turbine, which kind of turbine requires condenser. In this case, mode change operation methods are used for generating maximum electricity or maximum heat according to demanding the seasonal electricity and heat.

Improved ADALINE Harmonics Extraction Algorithm for Boosting Performance of Photovoltaic Shunt Active Power Filter under Dynamic Operations

  • Mohd Zainuri, Muhammad Ammirrul Atiqi;Radzi, Mohd Amran Mohd;Soh, Azura Che;Mariun, Norman;Rahim, Nasrudin Abd.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1714-1728
    • /
    • 2016
  • This paper presents improved harmonics extraction based on Adaptive Linear Neuron (ADALINE) algorithm for single phase photovoltaic (PV) shunt active power filter (SAPF). The proposed algorithm, named later as Improved ADALINE, contributes to better performance by removing cosine factor and sum of element that are considered as unnecessary features inside the existing algorithm, known as Modified Widrow-Hoff (W-H) ADALINE. A new updating technique, named as Fundamental Active Current, is introduced to replace the role of the weight factor inside the previous updating technique. For evaluation and comparison purposes, both proposed and existing algorithms have been developed. The PV SAPF with both algorithms was simulated in MATLAB-Simulink respectively, with and without operation or connection of PV. For hardware implementation, laboratory prototype has been developed and the proposed algorithm was programmed in TMS320F28335 DSP board. Steady state operation and three critical dynamic operations, which involve change of nonlinear loads, off-on operation between PV and SAPF, and change of irradiances, were carried out for performance evaluation. From the results and analysis, the Improved ADALINE algorithm shows the best performances with low total harmonic distortion, fast response time and high source power reduction. It performs well in both steady state and dynamic operations as compared to the Modified W-H ADALINE algorithm.

Tracking Error Extraction Algorithm in Monopulse Active Homing Radar System

  • Kwon, Jun-Beom;Kim, Do-Hyun;Kim, Lee-Han;Byun, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.158.5-158
    • /
    • 2001
  • Monopulse active homing radar requires velocity and angle information of target to track fast moving target. Target velocity can be estimated by measuring the frequency shift between transmitted and received frequencies. Angle information is obtained by measuring boresight error. Measurement of doppler frequency component in received signal is done through FFT analysis and interpolation algorithm for fine tuning. Boresight errors in azimuth and elevation axes are proportional to the power of each difference channel relative to sum channel. The target signal power in difference channel is estimated more precisely by measuring the power of FFT result cell of maximum ...

  • PDF

고정식 진동수주형 파력 발전장치의 챔버 유동 및 파에너지 변환효율 해석 (Numerical Analysis of Chamber Flow and Wave Energy Conversion Efficiency of a Bottom-mounted Oscillating Water Column Wave Power Device)

  • 구원철;김무현;최윤락
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.388-397
    • /
    • 2010
  • A two-dimensional time-domain, potential-theory-based fully nonlinear numerical wave tank (NWT) was developed by using boundary element method and the mixed Eulerian-Lagrangian (MEL) approach for free-surface node treatment. The NWT was applied to prediction of primary wave energy conversion efficiency of a bottom-mounted oscillating water column (OWC) wave power device. The nonlinear free-surface condition inside the chamber was specially devised to represent the pneumatic pressure due to airflow velocity and viscous energy loss at the chamber entrance due to wave column motion. The newly developed NWT technique was verified through comparison with given experimental results. The maximum energy extraction was estimated with various chamber-air duct volume ratios.

Development and Testing of a Prototype Long Pulse Ion Source for the KSTAR Neutral Beam System

  • Chang Doo-Hee;Oh Byung-Hoon;Seo Chang-Seog
    • Nuclear Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.357-363
    • /
    • 2004
  • A prototype long pulse ion source was developed, and the beam extraction experiments of the ion source were carried out at the Neutral Beam Test Stand (NBTS) of the Korea Superconducting Tokamak Advanced Research (KSTAR). The ion source consists of a magnetic bucket plasma generator, with multi-pole cusp fields, and a set of tetrode accelerators with circular apertures. Design requirements for the ion source were a 120kV/65A deuterium beam and a 300 s pulse length. Arc discharges of the plasma generator were controlled by using the emission-limited mode, in turn controlled by the applied heating voltage of the cathode filaments. Stable and efficient arc plasmas with a maximum arc power of 100 kW were produced using the constant power mode operation of an arc power supply. A maximum ion density of $8.3{\times}10^{11}\;cm^{-3}$ was obtained by using electrostatic probes, and an optimum arc efficiency of 0.46 A/kW was estimated. The accelerating and decelerating voltages were applied repeatedly, using the re-triggering mode operation of the high voltage switches during a beam pulse, when beam disruptions occurred. The decelerating voltage was always applied prior to the accelerating voltage, to suppress effectively the back-streaming electrons produced at the time of an initial beam formation, by the pre-programmed fast-switch control system. A maximum beam power of 0.9 MW (i.e. $70\;kV{\times}12.5\;A$) with hydrogen was measured for a pulse duration of 0.8 s. Optimum beam perveance, deduced from the ratio of the gradient grid current to the total beam current, was $0.7\;{\mu}perv$. Stable beams for a long pulse duration of $5{\sim}10\;s$ were tested at low accelerating voltages.