• Title/Summary/Keyword: Maximum Penetration Depth

Search Result 112, Processing Time 0.018 seconds

Effect of three different irrigation solutions applied by passive ultrasonic irrigation

  • Llena, Carmen;Forner, Leopoldo;Cambralla, Raquel;Lozano, Adrian
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.143-148
    • /
    • 2015
  • Objectives: This study evaluated the maximum depth and percentage of irrigant penetration into dentinal tubules by passive ultrasonic irrigation (PUI). Materials and Methods: Thirty extracted human teeth were instrumented and divided into three groups. According to final irrigation regimen, 5.25% sodium hypochlorite (Group A, NaOCl), 2% chlorhexidine (Group B, CHX) and saline solution (Group C, control group) were applied with Irrisafe 20 tips (Acteon) and PUI. Irrigant was mixed with 0.1% rhodamine B. Sections at 2 mm, 5 mm, and 8 mm from the apex were examined with confocal laser scanning microscopy (CLSM). The percentage and maximum depth of irrigant penetration were measured. Kruskal-Wallis test and Mann-Whitney test were performed for overall comparison between groups at each level and for pairwise comparison, respectively. Within a group, Wilcoxon test was performed among different levels. p values less than 0.05 were considered significant. Results: In all groups, highest penetration depth and percentage of penetration were observed at the 8 mm level. At 2 mm level, Groups A and B had significantly greater depths and percentages in penetration than Group C (p < 0.05), but there were no significant differences between Groups A and B. At 5 mm level, penetration depths and percentage of penetration was not significantly different among the groups. Conclusions: NaOCl and CHX applied by PUI showed similar depth and percentage of penetration at all evaluated levels.

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.

Fatigue life evaluation of socket welded pipe with incomplete penetration defect: I-test and FE analysis

  • Lee, Dong-Min;Kim, Seung-Jae;Lee, Hyun-Jae;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3852-3859
    • /
    • 2021
  • This paper presents experimental and numerical analysis results regarding the effects of an incomplete penetration defect on the fatigue lives of socket welded pipes. For the experiment, four-point bending fatigue tests with various defect geometries (defect depth and circumferential length) were performed, and test results are presented in terms of stress-life data. The results showed that for circumferentially short defects, the fatigue life tends to increase with increasing crack depth, but for longer defects, the trend becomes the opposite. Finite element analysis showed that for short defects, the maximum principal stress decreases with increases in crack depth. For a longer defect, the opposite trend was found. Furthermore, the maximum principal stress tends to increase with an increase in defect length regardless of the defect depth.

A Study on the Depth of Ink Penetration according to the Printing Pressure in Domestic Newsprint Paper (국산 신문 용지의 인쇄 압력에 따른 잉크 침투 깊이에 관한 연구)

  • Yoo, Jae-Hyun;Baik, Yong-Kug;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.27 no.1
    • /
    • pp.59-71
    • /
    • 2009
  • Measuring ink penetration is one of the best ways to know paper printability. Ink penetration was effected by physical properties of newsprint paper. This study was carried out for the purpose of improvement printability with ink penetration of domestic newsprint paper. The samples were prepared by means of 20 newsprint paper manufacture company in Korea, and were tested by IGT printability tester. The results of this experiments showed that the depth of ink penetration according to the printing pressure. The maximum points in ink transfer curve and the coefficients of oil absorption of the papers also depend mainly upon the situation of anchor points.

  • PDF

Stability Analysis of Sheet Pile Reinforced with Strut (버팀대로 보강된 널말뚝의 안정해석)

  • Kim, Ji Hoon;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.226-236
    • /
    • 1997
  • The results obtained by elasto-plastic analysis method about the displacement, deformation and stability on the soft ground excavation using sheet pile were summarized as follows ; 1. In the case of strut 1 step, the maximum wall displacement value in the first and the second excavation was small, but it increase remarkably after the third excavation and when the excavation depth was 8m, the point of maximum wall displacement was shown 0.75H~0.8H. 2. The value of safety factor(Fs) was increased with increasing of the penetration depth of sheet pile, cohesion and internal friction angle of ground. Safety factor was mostly effected by penetration depth of sheet pile and more effected by cohesion than internal friction angle of ground. 3. Since the deformation of sheet pile of this ground from the results of analysis and measurement increased remarkabaly after 6m excavation depth, it was desirable that the point of strut installation was GL-6m. 4. Safe excavation depth on ground by analysis considered penetration depth, cohesion and internal friction was shown at the table 3.

  • PDF

A Study on the Depth of Frost Penetration in Korea (우리나라의 동결심도(凍結深度)에 관한 연구(研究))

  • Hong, Won Pyo;Kim, Myung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.147-154
    • /
    • 1988
  • Korea has the ground which freezes in winter and melts in warmer seasons by turns. Therefore, in designing civil-structures or buildings on such ground, the depth of seasonal frost penetratio must be considered. In this paper, approximate contours of the maximum depth of frost penetration in Korea is presented. It was found that the maximum depth of frost penetration did not have the linear relationship to square root of the freezing index. In order to establish more reliable method to estimate the maximum depth of frost penetration, a new empirical equation is introduced. In the presented equation, the dry unit weight and water content of soil are considered in addition to the freezing index. And the equation is compared with other previous equations used so far.

  • PDF

A Study of Frost Penetration Depth and Frost Heaving in Railway Concrete Track (콘크리트 궤도의 동결깊이 및 동상량 측정 연구)

  • Lee, Daeyoung;Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Many infra suructure such as road, railway, building and utility foundations have been damaged by the repeated freezing and thawing of the soil during winter and spring every year in seasonal frost region. The frost penetration depth is most important factor in the design of structure such as road, railway and building in seasonal frost region. This paper presents the results of calculation of frost penetration depth and frost heaving in concrete track for railway construction. Model concrete track were installed near the railway track in Gangwon, Gyeonggi, Choongbuk province and frost penetration depth were measured using methylene blue frost penetration depth gauge. Model concrete track in Cheolwon, frost heaving of concrete track were also evaluated. The measure of maximum frost penetration depth and frost heaving can be applied to design railway track for cold region in Korea.

Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis

  • Raheem, Shehata E Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.;Mansour, Mahmoud H
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.407-421
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures, in addition to the structural integrity of platforms components under the maximum and minimum operating loads when subjected to the environmental conditions. In-place analysis have been executed to check that the structural member with all appurtenance's robustness have the capability to support the applied loads in either storm or operating conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the dynamic characteristics of the platform model and the response of platform joints then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have significant effects in the results of the in-place analysis behavior. The most of bending moment responses of the piles are in the first fourth of pile penetration depth from pile head level. The axial deformations of piles in all load combinations cases of all piles are inversely proportional with penetration depth. The largest values of axial soil reaction are shown at the pile tips levels (the maximum penetration level). The most of lateral soil reactions resultant are in the first third of pile penetration depth from pile head level and approximately vanished after that penetration. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the force responses demands of the offshore platform with a piled jacket-support structure well.

The Distribution Frost Penetration Depth and Relationship between Frost Penetration and Freezing Index in South Korea (전국(全國) 동결(凍結)깊이 분포(分布)와 동결깊이 및 동결지수(凍結指數)와의 상관관계(相關關係))

  • Kim, Sang Kyu;Park, Sang Kil;Park, Bang Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.79-90
    • /
    • 1990
  • The National Construction Research Institute of Korea has measured the depth of the frozen ground covering all the areas of South Korea during ten years ranging through 1980. The measurements were made for the frozen ground at random but intended for the most frost-susceptible soils. The soils of the frozen ground were sampled and then classifide into four groups according to the frost design soil classification system suggested by the Corps of Engineers of the United States. The contours of the maximum depth of the frost penetration are drawn on a map with data collected during the ten years. Also isolines of the design frezing index are shown on an another map using the metorological information of 1980-1989 and compared whth those in vestigated in 1980 by Highway Survey Team of the Ministry of Construction, Korea. It is known that the maximum depth of the frost penetration is related to freezing index values. An empirical formula expressing the relation is suggsted, in which the depth is proportional to the one-third power of the air freezing index values.

  • PDF

The Dose Distribution of Arc therapy for High Energy Electron (고에너지 전자선 진자조사에 의한 선량분포)

  • Chu, S.S.;Kim, G.E.;Suh, C.O.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF