• Title/Summary/Keyword: Maximum Material Condition

Search Result 445, Processing Time 0.028 seconds

A Study on Absorption Properties of the EM Wave Absorber Using TiO2 in W-band

  • Choi, Chang-Mook;Ko, Kwang-Soob
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.111-115
    • /
    • 2010
  • In this paper, the electromagnetic (EM) wave absorbers using TiO2 as a dielectric material with chlorinated polyethylene (CPE) were investigated in W-band radio frequencies. We compared the relative permittivity with reflectionless curve and the absorption properties of samples containing 40 wt.%, 50 wt.%, 60 wt.%, 70 wt.%, and 80 wt.% TiO2. It is possible to realize a complex relative permittivity satisfying the reflectionless condition by choosing composition ratio of TiO2. The optimized composition ratio of TiO2 for the maximum absorption property is about 70 wt.%. As a result, we have confirmed the realization of an EM wave absorber with a high absorption property in W-band radio frequencies.

Properties of MIM Ceramic Thin Film Structure (MIM 세라믹 박막 구조의 특성 분석)

  • Kim, Jin-Sa;Cho, Choon-Nam;Choi, Woon-Shick;Song, Min-Jong;So, Byeong-Mun;Kim, Chung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.333-334
    • /
    • 2008
  • The SCT thin films were deposited on Pt-coated electrode using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of 100~500[$^{\circ}C$]. The optimum conditions of RF power and Ar/$O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about 18.75[$\AA$/min] at the optimum condition. The maximum dielectric constant of SCT thin film was obtained by annealing at $600^{\circ}C$.

  • PDF

Removal of a High Load of Ammonia by a Marine Bacterium, Vibrio alginolyticus in Biofilter

  • Kim, Nam-Jin;Shoda, Makoto
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.316-322
    • /
    • 2002
  • A newly isolated heterotrophic marine bacterium, Vibrio alginolyticus, was used to remove a high load of ammonia gas under non-sterile condition. The cells were inoculated onto an inorganic packing material in a fixed-bed reactor (biofilter), and a high load of ammonia, in the range of ammonia gas concentration of 170 ppm to 880 ppm, was introduced continuously. Sucrose solution and 3% NaCl was supplied intermittently to supplement the carbon source and water to the biofilter. The average percentage of gas removed exceeded 85% for 107-day operation. The maximum removal capacity and the complete removal capacity were$19\;g-N\;kg^{-1}$ dry packing material $day^{-1}$ and $16\;g-N\;kg^{-1}$ dry packing material $day^{-1}$, respectively, which were about three times greater than those obtained in nitrifying sludge inoculated onto the same packing material. On day 82, the enhanced pressure drop was restored to the normal one by NaOH treatment, and efficient removal characteristics were later observed. During this operation, the non-sterile condition had no significantly adverse effect on the removability of ammonia by V. alginolyticus.

FEM Analysis on Temperature Distribution and Thermal Stress of a Brake Drum for Large Commercial Vehicle (대형 상용차용 브레이크 드럼의 온도 분포 및 열응력에 관한 유한요소 해석)

  • Kim, Ho-Kyung;Lee, Young-In;Joo, Se-Min
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.7-13
    • /
    • 2006
  • A transient heat transfer and thermal stress analysis for a brake drum of commercial vehicles have been performed by ANSYS code in the cases of single braking and the repeated braking condition. The temperature and thermal stress distributions in the brake drum under various braking conditions were obtained using a two-dimensional axisymmetric model. In case of deceleration of 0.3G with an initial vehicle speed of 60km/h, the maximum temperature in the drum was $87.6^{\circ}C$ after braking application. The maximum stress of 78.7MPa in the drum occurred at the intersection between the flange and hat under a condition in which repeated 15 cycles braking with an initial vehicle speed of 60km/h and a deceleration of 0.3G is applied to according to KS R1129. The maximum stress value is much lower than the yield strength of drum material(FC250).

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Gun;Chang, Sung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.417-428
    • /
    • 2008
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method, characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, When the process capability is high, more exact product size can be produced under stable manufacturing condition. larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

  • PDF

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Geun;Chang, Sung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method and characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, when the process capability is high, more exact product size can be produced under stable manufacturing condition. Larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

Operation Characteristics of Bypass Diode for PV Module (태양전지 모듈의 바이패스 다이오드 동작 특성 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Lawrence, Waithiru C.K.;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • In this paper, an I-V characteristics of bypass diode has been studied by counting the shading effect in photovoltaic module. The shadow induces hot spot phenomenon in PV module due to the increase of resistance in the current path. Two different types of PV module with and without bypass diode were fabricated to expect maximum output power with an increasing shading rate of 5 % on the solar cell. Temperature distribution is also detected by shading the whole solar cell for the outdoor test. From the result, the bypass diode works properly over 60 % of shading per cell with constant output power. Maximum power generation in case of solar cell being totally shaded with bypass diode decreases 41.3 % compared with the one under STC(Standard Test Condition). On the other hand, the maximum output power of the module without bypass diode gradually decreases by showing hot spot phenomenon with the increase of shading ratio on the cell and finally indicates 95.5 % of power loss compared with the output under STC. Finally the module temperature measured increases around $10^{\circ}C$ higher than that under STC due to hot-spots which come from the condition without bypass diode. It has been therefore one of the main reasons for degrading the PV module and shortening the durability of the PV system.

Evaluation of Installation Damage Factor for Geogrid using Maximum Particle Size of Backfill Material (뒤채움 최대입도를 이용한 지오그리드 보강재의 시공손상계수 산정 방법)

  • Kim, Kyung-Suk;Choi, Young-Chul;Kim, Tae-Soo;Lim, Seoung-Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • Reduction Factor for Installation Damage required for calculation of design strength of geogrid used in MSEW(mechanically stabilized earth wall) design is usually obtained in the field test simulating real construction condition. However, damages occurred in geogrid during backfill work are influenced by many factors such as polymer types, unit weight per area, backfill construction method and gradation of backfill material and field test considering these factors demands lots of time and costs. In this study, factors affecting installation damage are analyzed and empirical method for evaluating reduction factor for installation damage using maximum particle size in backfill material is suggested.

  • PDF

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.