• Title/Summary/Keyword: Maximum Material Condition

Search Result 445, Processing Time 0.041 seconds

The 3-Dimensional Finite Element Analysis of Minimum Implant Structure for Edentulous Jaw (무치악에 대한 최소 임플란트의 구조물의 3차원 유한요소 해석)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • The aim of the study is to interpret the distribution of occlusal force by 3-dimensional finite element analysis of ISP(Implant Supported Prosthesis) supported by minimum number of implant to restore the edentulous patients. For this study, the Astra Tech implant system is used. Geometric modeling for 6 and 4 fixture ISP group is performed with respect to the bone, implant and one piece superstructure, respectively. Implants are arbitrarily placed according to the anatomical limit of lower jaw and for the favorable distribution of occlusal force, which is applied at the end of cantilever extension of ISP with 30mm. Element type is tetrahedral for finite element model and the typical mechanical properties, Young's modulus and Poisson's ratio of each material, cortical, cancellous bone and implant material are utilized for the finite element analysis. From this study, we can see the distribution of equivalent stress equal to real situation and speculate the difference in the stress distribution in the whole model and at each implant fixture, From the analysis, the area of maximum stress is distributed on distal contact area between bone and fixture in the crestal bone. The maximum stress is 53MPa at the 0.2mm area from the bone-implant interface in the maximum side for 300N load condition for 4 fixture case, which is slightly less than the stress calculated from allowable strain. This stress has not been deduced to directly cause the loss of crestal bone around implant fixture, but the stress can be much reduced as the old peoples may have lower chewing force. Thus, clinical trial may be performed with this treatment protocol to use 4 fixtured ISP for old patients.

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

Wear Analysis at the Interface of Connecting-Rod Small-End Bushing and Piston-Pin Boss with a Floating Piston-Pin at Constant Angular Velocity during Engine Firing (엔진 파이어링동안 일정 축 각속도에서 비고정식 피스톤-핀과 연결봉-소단부 부싱 및 피스톤-핀 보스의 접촉면 마모해석)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.168-192
    • /
    • 2020
  • In recently designed diesel engines, the running conditions for piston-pin bearings have become severe because of the higher combustion pressure and increased temperature. Moreover, the metal removal from the bushing material has strongly reduced the ability of the antifriction material to accept asperity contacts. Therefore, it is necessary to find ways of reducing wear scar on the connecting-rod small-end bushing and piston-pin boss bearing related to the higher combustion pressure on the power cell of an engine. In this work, the position and level of material removal from the surfaces of the bushing and bearing under such severe operating conditions - for example, maximum power and torque conditions of a passenger car diesel engine - are estimated for several combinations of surface roughness. First, piston-pin rotating motion is investigated by calculating the friction coefficient at piston-pin bearings, the oil film thickness, and the frictional torques induced by hydrodynamic shear stress. Subsequently, the wear scarring on the surfaces of a connecting-rod small-end bushing and two piston-pin boss bearings related to piston-pin rotational motion is numerically calculated under the maximum power and torque operating conditions. This work is helpful to determine the reasonable surface roughness of the bushing and bearing for reducing wear volume occurring at the interface between a bearing and a shaft.

Performance Analysis of Oil-lubricated Thrust Collars in Integrally Geared Compressors (증속 기어 압축기용 스러스트 칼라의 윤활 성능 해석)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.169-174
    • /
    • 2018
  • A multi-stage compressor (MSC) is comprised of several impellers installed in the pinion gear shaft driven by a main bull gear. In the pinion shaft, a thrust collar (TC) is installed to support the thrust load. The TC makes the lubrication system simpler in the MSC; therefore, it is widely used in similar kinds of machinery. Typically, TCs are installed on both sides of the bull gear and pressure is developed in the lubricated area by creating a taper angle on the TC and bull gear surface. In the current study, we developed a numerical analysis model to evaluate the performance of the TC considering its design parameters. We sloved the Reynolds equation using the finite element method and applied the half Sommerfeld condition to consider cavitation. Based on the pressure calculated in the lubricated area, we calculated the power loss and minimum film thickness. In addition, we calculated stiffness and damping using perturbation method. We performed parametric studies using the developed model. The results of the analysis show that the maximum pressure presents in the center area of the TC and it increases with the taper angle. The area over which pressure is developed decreases with the taper angle. The results also show that there is an optimum taper angle providing minimum power loss and maximum film thickness. Additionally, the stiffness and damping decrease with the taper angle. As the applied load increases, the power loss increases and the minimum film thickness decreases. However, the stiffness and damping increase with the applied load.

Linear Regression Analysis of Tensile Performance for the Polyurethane Coating Waterproofing Material Periodically Exposed to Chemical Degradation (회귀 분석을 통한 폴리우레탄 도막방수재의 장기 화학 열화조건에 따른 인장성능 변화 지표)

  • Ju, Hee-Jeong;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.455-461
    • /
    • 2018
  • The purpose of this study is to evaluate the tensile strength performance of the polyurethane coating material used as the waterproofing material in concrete structures. A linear regression equation is proposed to establish a correlation on the tensile strength of polyurethane coating membrane against periodic exposure to chemical degradation. The polyurethane film membrane showed a minimum strength of 23% to a maximum of 38% when subjected to chemical degradation. The elongation rate showed a relation with the tensile strength deterioration rate of at least 15% to 22% at maximum, and the proposed regression equation could be used to predict the degree of performance change of the polyurethane coating membrane under chemical degradation condition.

The Optimimum Gel Content Characteristics for Cell Cracks Prevention in PV Module (PV모듈의 cell crack 방지를 위한 EVA Sheet의 최적 Gel content 특성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Kim, Kyung-Soo;Huh, Chang-Su;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1108-1109
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. Recently, the thickness of solar cell gets thinner to reduce the quantity of silicon. And the reduced thickness make it easy to be broken while PV module fabrication process. Solar cell's micro cracks are increasing the breakage risk over the whole value chain from the wafer to the finished module, because the wafer or cell is exposed to tensile stress during handling and processing. This phenomenon might make PV module's maximum power and durability down. So, when using thin solar cell for PV module fabrication, it is needed to optimize the material and fabrication condition which is quite different from normal thick solar cell process. Normally, gel-content of EVA sheet should be higher than 80% so PV module has long term durability. But high gel-content characteristic might cause micro-crack on solar cell. In this experiment, we fabricated several specimen by varying curing temperature and time condition. And from the gel-content measurement, we figure the best fabrication condition. Also we examine the crack generation phenomenon during experiment.

  • PDF

Numerical Study on Heat Transfer Characteristics in a directly Heated $SO_3$ Decomposer for the Sulfur-Iodine process (황-요오드 공정용 직접접촉 삼산화황 분해반응기내 열전달 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Shin, Young-Joon;Tak, Nam-Il;Lee, Ki-Young;Chang, Jong-Wha;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2244-2249
    • /
    • 2007
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed by using a computational fluid dynamics code(CFD) with the CFX 5.7.1. The use of a directly heated decomposition reactor in conjunction with a VHTR allows higher decomposition reactor operating temperature. However, the thermochemical and hybrid hydrogen production processes accompanied with the high temperature and strongly corrosive operating conditions basically have material problems. In order to resolve these problems, we carried out the development of a structural material and equipment design technologies. The results show that the maximum temperature of the structural material (RA330) could be maintained at 800$^{\circ}C$ or less. Also, it can be seen that the mean temperature of the reaction region packed with catalysts in the $SO_3$ decomposition reactor could satisfy the temperature condition of around 850 $^{\circ}C$ which is the target temperature in this study.

  • PDF

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong;Lee, Dong-Hyun;Won, Seunggun;Ahn, Heekwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.753-758
    • /
    • 2016
  • Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

Stabilization Analysis of Piezo-electric Converter for PFM and PWM Control (압전 변압기의 제어 방식에 따른 모델링 및 안정화분석)

  • Yun, Seok-Teak;Park, Seong-Woo;Won, Young-Jin;Lee, Jin-Ho;Kim, Jin-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.401-401
    • /
    • 2009
  • Recently, demands for the development of compact, lightweight power supplies with higher power density and higher efficiency have been increased. Since Piezoelectric Transformer (PT) was emerged in device and material industry, it has been suggested as a viable alternative to the magnetic transformer in some applications. PT has some advantages such as low profile and mechanical energy transfer with little electromagnetic interface (EMI). Also, PT can provide high voltage stepping ratio with good isolation and requires no copper windings saving copper usage especially for large voltage conversion differences. Conventional control of PT converter has mainly two-way. One is the pulse frequency modulation (PFM) control method and the other is the pulse width modulation (PWM) control with frequency fixed method. It is known that the maximum PT efficiency can be obtained when it operates near the resonant frequency of the PT. And, also PT's resonant frequency moves according to the load condition. Therefore, selection of PT converter control method is very difficult. This paper analyzes general piezo-electric converter modeling and proposes a guide-line to selection of control method and stabilization control.

  • PDF

Fabrications and properties of ZnS thin film used as a buffer layer of electroluminescent device (전계발광소자 완충층용 ZnS 박막 제작 및 특성)

  • 김홍룡;조재철;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The role of ZnS buffer layer not only suppresses chemical reactions between emission material and insulating material but also alters the luminescence and the crystallinity of the emission layer, if ZnS buffer layer was sandwiched between emission layer and insulating layer of electroluminescent device. In this research, we fabricated ZnS thin film with rf magnetron sputter system by varying rf power 100, 200W, substrate temperature 100, 150, 200, 250.deg. C and post-annealing temperature 200, 300, 400, 500.deg. C and analysed X-ray diffraction pattern, transmission spectra and cross section by SEM photograph for seeking the optimal crystallization condition of ZnS buffer layer. As a result, increasing the rf power, the crystallinity of ZnS thin film was improved. It was found that the ZnS thin film had better properties than anything else when fabricated with the following conditions ; rf power 200W, substrate temperature 150.deg. C, and post-annealing temperature 400.deg. C. ZnS thin film had the transmittance more than 80% in visible range. So it is suitable to use as a buffer layer of electroluminescent devices.

  • PDF