• Title/Summary/Keyword: Maximum Loading Factors

Search Result 99, Processing Time 0.029 seconds

The ATC Calculation Method with Thermal Constraints and Voltage Stability Constraints (열적용량과 전압안정도를 고려한 ATC 계산 방법에 관한 연구)

  • Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.86-93
    • /
    • 2007
  • This paper proposes two fast calculation methods of ATC. These two methods evaluate ATC with thermal constraints(Thermal ATC) and ATC with voltage stability constraints(Voltage ATC) respectively. The ATC with thermal constraints was based on the linear incremental power flow to account for the line flow thermal loading effects when the n-1 security constraints were included. The ATC with voltage stability constraints used two-bus equivalents of the system to find the maximum load at a load bus before reaching the voltage stability problem. The methods were tested on the IEEE 30bus systems and the results obtained were compared with those found by some other methods.

Estimating the required storage inventory of a container terminal considering the variance of a containership's load size (본선 작업물량의 변동을 고려한 컨테이너터미널의 소요장치량 산정)

  • Park, Byung-In;Bae, Jong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.261-267
    • /
    • 2006
  • The required storage inventory is a very important decision variable which determines the storage capacity of a container terminal. Generally, the required storage inventory is dependent upon such factors as ship headway, allowable dwell time of containers, loading/unloading time per ship, and so on. Until now, the required storage inventory is estimated under the assumption that the factors are deterministic in several studies. However, this study proposes how to estimate a required storage inventory satisfying the required service level under the assumption that a containership's load size is probabilistic. Numerical experiments, which use a simulation show that the proposed method can estimate more adequately the maximum storage inventory than other methods under a probabilistic environment.

  • PDF

Analysis of the Factors Affecting Anaerobic Thermophilic Digestibility of Food Wastes (음식물쓰레기의 고온 혐기성 소화도에 미치는 요소에 대한 분석)

  • Kim, Do Hee;Hyun, Seung Hoon;Kim, Kyung Woong;Cho, Jaeweon;Kim, In S.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.130-139
    • /
    • 2000
  • Serial basic tests were conducted for the determination of fundamental kinetics and for the actual application of kinetic parameter to food waste digestion with precise measurement of methane production under a thermophilic condition. The effects of food particle size, sodium ion concentration, and volatile solid (VS) loading rate on the anaerobic thermophilic food waste digestion process were investigated. Results of serial test for the determination of fundamental kinetic coefficients showed the value of k (maximum substrate utilization rate coefficient) and KS (half-saturation coefficient) as $0.24hr^{-1}$ and $700mg/{\ell}$, respectively, for non-inhibiting organic loading range. No inhibition effect was shown until $5g/{\ell}$ of sodium ion concentration was applied to a serum bottle reactor. However, the volume of methane gas was decreased gradually when the concentrations of more than $5g/{\ell}$ of sodium ion applied. All sizes of food waste particle showed the same constants (A : 0.45) but the maximum substrate utilization rate constant ($k_{HA}$) was inversely proportional to particle size. As an average particle size increased from 1.02 mm to 2.14 mm, $k_{HA}$ decreased from $0.0033hr^{-1}$ to $0.0015hr^{-1}$. The result reveals that particle size is one of the most important factors in anaerobic food waste digestion. There was no inhibition effect of sodium ion when VS loading rate was $30g/{\ell}$. And maximum injection concentration of VS loading rate was determined about $40g/{\ell}$.

  • PDF

A Study for Development of Ratio Beale Measuring Pain Using Korean Pain Tersm (통증어휘를 이용한 통증비율척도의 개발연구)

  • 이은옥;윤순녕;송미순
    • Journal of Korean Academy of Nursing
    • /
    • v.14 no.2
    • /
    • pp.93-111
    • /
    • 1984
  • The main purpose of this study is to develop a ratio scale measuring level of pain using Korean pain terms. The specific purposes of this study are to identify the degree of pain of each pain term in each subclass: to classify each subclass in terms of dimensions of pain; and to analyze factors of the Korean pain ratio scale clustering together. One hundred an4 fifty eight pain terms which were originally identified as representative terms and their synonyms were used for data collection. Fifty eight nursing professors ana sixty one medical doctors who have contacted with patients having pain were asked to rate the weight of each pain term on a visual analogue scale. Subclasses in which ranks of pain terms were same f s findings in two previous studies were 1) thermal 3 am 2) cavity pressure, 3) single stimulating pain, 4) radiation pain. and 5) chemical pain. Subclasses in which ranks of pain terms were confused were 1) incisive pressure, and 2) cold pain. Subclasses in which one new pain term was added were 1) inflammatory-repeated pain, 2) punctuate pressure, 3) constrictive pressure, 4) fatigue-related pressure, and 5) suffering-relate4 pain. Subclasses in which two new pain terms were added were 1) traction pressure, 2) peripheral nerve pain, 3) dull pain, 4) pulsation-related pain, 5) digestion-related pain, 6) tract pain, and 7) punishment-related pain. Subclass in which 3 new pain terms were included was fear-related pain. Rating scores of 5 words in 4 subclasses were significantly different between the normal group and the extreme group of subjects in terms of subjective rating. Only one word among 6 words was that newly added to the scale. Rating scores of 12 words in 9 subclasses were significantly different between doctor group and nursing professor group. Among these 12 words, only 3 were those newly added to the scale. In comparison of these 12 words, mean scores of the nursing professors were always 7 to 16 points higher than those of the medical doctors. In the analysis of judgement of subjects in terms of dimensions of pain terms, subclasses of dull pain, cavity pressure, tract pain and cold pain were suggested to be included in the miscellaneous dimension. As a result of factor analysis of the ratings given to 96 pain words using principal components analysis without iteration and with varimax rotation limiting the number of factors to 4, factors of severe pain (factor I) mild-moderate pain (factor II) , causative pain (factor III) and temperature-related pain(factor IV) were extracted with the factor loading above 0.388. When the pain words were re-arranged on the bases of factor loading above 0.368, number of factors decreased to only first two factors. Maximum score of pain word in factor II was 46.17 and the minimum score of the factor I was 45.36. Further studies are needed to identify the validity, reliability, sensitivity and practicability of this ratio scale using patients having various sources of pain.

  • PDF

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

A Study of the Improvement of Execution Speed and Loading of Java Card Program by applying prefetching LRU-OBL Buffer Technique (선반입 LRU-OBL 버퍼 기법을 적용한 자바 카드 프로그램 적재 및 실행 속도 개선에 관한 연구)

  • Oh, Se-Won;Choi, Won-Ho;Jung, Min-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1197-1208
    • /
    • 2007
  • These days, most of SMART card, JAVA card, picked up the JAVA Card Platform gets the position as a standard. Java Card technology provides implantation, platform portability and high security function to SMART Card. Compared to normal Smart Card, JAVA card has a defect that is a low running speed caused by a distinctive feature of JAVA programming language. Factors that affect JAVA Card execution speed are the method how to save the data and install the applets of JAVA Card installation instrument. In this paper, I will offer the plan to improve JAVA Card program's loading and execution speed. At Java Card program, writing, updating and deleting process for data at EEPROM can be improved of Java Card speed by using high speed RAM. For this, at JAVA Card as a application of RAM, I will present prefetching LRU-ORL Buffer Cache Technique that is suitable for Java Card environment. As a data character, managing all data created from JAVA Curd at Buffer Cache, decrease times of recording at maximum for EEPROM so that JAVA Card program upload and execution speed will be improved.

  • PDF

A Study on Seismic Response of Pile Foundations for Aseismic Design (말뚝기호의 내진해석에 대한 연구)

  • 이인모;오진기
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.13-30
    • /
    • 1990
  • In this paper, response of pile foundations under seismic loading is studied for use in aseismic design of deep foundations. Both the pseudostatic methods such as subgrade reaction theory by Reese, and elastic analysis by Poulos, and the dynamic methods proposed by, respectively, Prakash and Gazetas, are used for this study. The top displacements and maximum bending moments of example piles are obtained by each method mentioned above, and the results by each method are compared among others. The group pile effects are also considered approximately. The calculated results are compared with experimental results obtained by Novak in 1984. The pseudostatic methods, combined with dynamic group interaction factors, and the dynamic method proposed by Gazetas which considers both kinematic interaction and inertial interaction, separately, estimate the top displacements reasonably well : the method by Prakah or the pseudostatic methods combined with static group interaction factors may overestimate the top displacements and bending moments as well. Therefore, it is recommended to the the simple elastic analysis combined with dynamic group interaction factors for aseismic design of pile foundatins and to confirm the results by the Gaz etas' dynamic methods.

  • PDF

Development of the Surface Forest Fire Behavior Prediction Model Using GIS (GIS를 이용한 지표화 확산예측모델의 개발)

  • Lee, Byungdoo;Chung, Joosang;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.481-487
    • /
    • 2005
  • In this study, a GIS model to simulate the behavior of surface forest fires was developed on the basis of forest fire growth prediction algorithm. This model consists of three modules for data-handling, simulation and report writing. The data-handling module was designed to interpret such forest fire environment factors as terrain, fuel and weather and provide sets of data required in analyzing fire behavior. The simulation module simulates the fire and determines spread velocity, fire intensity and burnt area over time associated with terrain slope, wind, effective humidity and such fuel condition factors as fuel depth, fuel loading and moisture content for fire extinction. The module is equipped with the functions to infer the fuel condition factors from the information extracted from digital vegetation map sand the fuel moisture from the weather conditions including effective humidity, maximum temperature, precipitation and hourly irradiation. The report writer has the function to provide results of a series of analyses for fire prediction. A performance test of the model with the 2002 Chungyang forest fire showed the predictive accuracy of 61% in spread rate.

Development of Impact Factor Response Spectrum with Tri-Axle Moving Loads and Investigation of Response Factor of Middle-Small Size-RC Slab Aged Bridges (3축 이동하중을 고려한 충격계수 응답스펙트럼 개발 및 중소규모 RC 슬래브 노후교량 응답계수 분석)

  • Kim, Taehyeon;Hong, Sanghyun;Park, Kyung-Hoon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2019
  • In this paper the response factor is investigated for middle and small size-RC slab aged bridges. The response factor consists of static and dynamic response factors and is a main parameter in the frequency based-bridge load carrying capacity prediction model. Static and dynamic response factors are determined based on the frequency variation and the impact factor variation respectively between current and previous (or design) states of bridges. Here, the impact factor variation is figured out using the impact factor response spectrum which provides the impact factor according to the natural frequency of bridges. In this study, four actual RC slab bridges aged over 30 years after construction are considered and their span length is 12m. The dynamic loading test in field using a dump truck and eigenvalue analysis with FE models are conducted to identify the current and previous (or design) state-natural frequencies of the bridges, respectively. For more realistic considerations in the moving loading situation, the impact factor response spectrum is developed based on tri-axle moving loads representing the dump truck load distribution and various supporting conditions such as simply supported and both ends fixed conditions. From the results, the response factor is widely ranged from 0.21to 0.91, showing that the static response factor contributes significantly on the results while the dynamic response factor has a small effect on the result. Compared to the results obtained from the impact factor response spectrum based on the single axle-simply supported condition, the maximum percentage difference of the response factors is below 3.2% only.

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.