• 제목/요약/키워드: Maximum Heat Rate

검색결과 643건 처리시간 0.019초

밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구 (A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate)

  • 윤홍석;남동군;황철홍
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.19-27
    • /
    • 2017
  • 밀폐된 구획실 화재에서 화원의 면적 및 위치, 화재성장률, 구획 체적의 변화가 열발생률을 포함한 주요 화재특성에 미치는 영향이 검토되었다. 이를 위해 닫힌 개구부가 적용된 ISO 9705 화재실을 대상으로 Fire Dynamics Simulator (FDS)를 활용한 화재시뮬레이션이 수행되었다. 주요 결론으로서, 화원의 면적 및 위치의 변화는 최대 열발생률, 총 열량, 상층부의 최대 온도 및 화학종 농도를 포함한 구획 내의 열적 특성과 화학적 특성에 큰 영향을 주지 않음을 확인하였다. 그러나 화재성장률과 구획 체적의 증가는 최대 열발생률 및 총 열량의 증가를 가져오며, 한계산소농도의 감소 및 최대 CO 농도의 증가를 발생시킨다. 마지막으로 화재성장률과 구획 체적의 함수로 표현된 최대 열발생률의 상관식을 도출하여, 밀폐된 구획실 화재에 대한 화재성장곡선의 적용을 위한 방법론이 제안되었다.

착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구 (An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions)

  • 이관수
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.

CNG 직접분사식 연소기에서의 열량해석(1) :균질급기 (Analysis of Heat Quantity in CNG Direct Injection Bomb(1) : Homogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.17-23
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyze the heat quantity of homogeneous charge methane-air mixture under various initial pressures, excess air ratios and ignition times. As the overall pressure increase, the values of maximum combustion pressure, maximum heat release rate and cumulative heat release have been increased. But it is not very meaningful to compare with some values such as maximum combustion pressure, maximum heat release rate and cumulative heat release for different overall pressure due to the different heat energy of supplied fuel. So the each value is needed to be compared with normalized value, which is divided by the entered fuel energy. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. As the overall pressure increase, the CHR ratios and the UHC ratios have been decreased, while the HL ratios have been increased. The CHR ratio of 300 ms has the higher value than that of 10000ms, and the HL ratios of 300 ms have a lower value.

득량만의 열수지 계절 변동 (The Seasonal Variation of the Heat Budget in Deukryang Bay)

  • 주용환;조규대
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.67-73
    • /
    • 1998
  • Surface heat budget of the Deukryang Bay from July 1, 1992 to September 12, 1993 is analyzed by us- ing the meteorological data (by Changhung Observatory and Mokpo Meteorological Station) and oceanogaphical data (by Research Center for Ocean Industrial Development. Pukyong National University). Each flux element at the sea surface which has annual variation Is derived with application of an aerodynamical bulk method and empirical formulae. The solar radiation Is the maximum In spring and sensible heat are the maximum in autumn and water. and minimum in summer The heat .storage rate is calclilated by using the rate of water temperature variation according to the depth. The oceanic transport heat is estimated as a residual. The net heat flux, the heat storage rate are positive In spring and summer, while they are negative in autumn and winter. The oceanic transport heat Is convergence In winter and divergence In the rest of seasons.

  • PDF

$Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향 (Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics)

  • 한봉석;이홍림;전명철
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

건축물 구획공간에 따른 화재성상 및 열방출율 측정에 관한 실험적 연구 - 실물규모 침대 매트리스 화재시험 중심으로 - (Experimental Study on the Measurement of Fire Behavior and Heat Release Rate in Building Compartment Space - Focus on Full Scale Fire Test of the Bed Mattress -)

  • 서보열;장우빈;박계원;홍원화
    • 한국화재소방학회논문지
    • /
    • 제32권6호
    • /
    • pp.28-33
    • /
    • 2018
  • 건축물 구획공간에 따른 화재성상 및 열방출율을 측정하기 위하여 실물규모 침대 매트리스의 표준화재시험방법(KS F ISO 12949 : 2011)으로 화재시험을 수행하였다. 개방형공간과 구획공간 모두 버너착화 후 초기 약 3분까지는 유사한 화재성장의 경향을 보이는 것으로 확인되었다. 3분후 구획공간에서의 열방출율이 개방형 공간보다 증가되어 높은 것으로 확인되었다. 침대 매트리스(SS)의 경우, 개방형 공간에서의 최대열방출율은 735 kW이며, 구획공간에서의 최대열방출율은 992 kW 로 측정되었다. 침대 매트리스(Q)의 경우 3분후 구획공간에서의 열방출율이 개방형 공간보다 급격하게 증가되는 것으로 확인되었다. 개방형 공간에서의 최대열방출율은 1,087 kW, 이 때의 측정시간은 346s 이며, 구획공간에서의 최대열방출율은 2,127 kW, 이때의 측정시간은 287 s 측정되어 구획공간에 따른 최대열방출율 및 측정시간의 차이가 확인되었다.

A new method fast measure cryogenic vessel heat leakage

  • LI, Zheng-Qing;LI, Xiao-Jin;LIU, Mo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권1호
    • /
    • pp.24-28
    • /
    • 2020
  • Heat leakage is an important parameter to reflect heat insulated performance of cryogenic vessel. According to the current standard requirements, it needs to measure the daily evaporation rate to indicate heat leakage. The test needs-over 24h after cryogenic vessel in heat equilibrium as standard required, therefore test efficiency is poor and new efficient method is required to cut test time. First of all, the volume of instantaneous evaporated gas and heat leakage are calculated by the current standard corresponding to the maximum allowable daily evaporation rate of cryogenic vessel. Depending on the relationship between real daily evaporation rate and maximum allowable daily evaporation rate of cryogenic vessel, we designed a new test method based on the pressure changes over time in cryogenic vessel to determine whether its heat insulated performance meets requirements or not. Secondly, the heat transfer process was analyzed in measurement of cryogenic vessel, and the heat transfer equations of whole system were established. Finally, the test was completed in four hours; meanwhile the heat leakage and daily evaporation rate of cryogenic vessel are calculated basing on test data.

기후요소가 온열질환자수에 미치는 영향 (The Effects of Climate Elements on Heat-related Illness in South Korea)

  • 정다은;임숙향;김도우;이우섭
    • 한국기후변화학회지
    • /
    • 제7권2호
    • /
    • pp.205-215
    • /
    • 2016
  • The relationship between the climate and the number of heat-related patients in South Korea was analysed in this study. The number of the patients was 1,612 during the summer 2011 to 2015 according to the Heat-related Illness (HRI) surveillance system. The coefficient of determination between the number of the patients and the daily maximum temperature was higher than that between the number of them and the other elements: the daily mean/minimum temperature and relative humidity. The thresholds of daily maximum and minimum temperature in metropolitan cities (MC) were higher than those in regions except for MC (RMC). The higher the maximum and minimum temperature became, the more frequently the heat-related illness rate was observed. The regional difference of this rate was that the rate in RMC was higher than that in MC. Prolonged heat wave and tropical night tended to cause more patients, which continued for 20 days and 31 days of maximum values, respectively. On the other hand, the relative humidity was not proportional to the number of the patients which was rather decreasing at over 70% of relative humidity.

열기관의 최대출력 사이클 (Maximum Power Output Cycle of Heat Engines)

  • 김수연;정평석;노승탁;김효경
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.694-701
    • /
    • 1990
  • 본 연구에서는 열기관의 출력이, 주어진 열원사이에서 구성되는 사이클의 형 태에 의존한다는 점에서 최대출력 사이클이 어떤 형태가 될 것인가하는 문제에 촛점을 맞추어 사이클을 해석하고, 최대출력을 구하고자 한다.

환상 열파이프의 열전달특성 연구 (Performance of an Annular Heat Pipe)

  • 송태호;이정오
    • 대한설비공학회지:설비저널
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 1979
  • Heat transfer characteristics of an annular heat pipe is investigated theoretically and experimentally. An annular heat pipe transports maximum heat which is found to be a cubic polynomial function of the thickness of annulus when the annulus becomes large, maximum heat transfer rate Is limited by boiling criterion. The limit decreases inversely proportional to the thickuess of annulus. Theoretical formula for thermal resistance of annular heat pipe Is proposed. Experimental results on the maximum heat transfer rate satisfactorily agree with theory. Measured thermal resistance is found to be lower than the predicted results as the thickness of annulus becomes large.

  • PDF