• Title/Summary/Keyword: Maximum Hardness Test

Search Result 156, Processing Time 0.031 seconds

Quality Characteristics of Dried Noodle containing Capsosiphon fulvescens Powder (매생이 분말을 첨가한 국수의 품질 특성 연구)

  • Park, Bock-Hee;You, Mi-Jin;Cho, Hee-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.2
    • /
    • pp.300-308
    • /
    • 2015
  • This study investigated the quality of noodles containing different amounts of Capsosiphon fulvescens powder. Noodles were prepared with C. fulvescens powder at ratios of 0, 1, 2, 3 and 4% based on flour weight. Cooking quality, mechanical texture properties, and viscosity were measured, and a sensory evaluation was performed with the prepared noodles. Gelatinization points of the composite C. fulvescens powder-wheat flours increased. As measured via amylography, viscosity at $95^{\circ}C$, viscosity at $95^{\circ}C$ after 15 minutes, and maximum viscosity values of samples decreased as C. fulvescens powder content increased. As increasing amounts of C. fulvescens powder were added, L, a and b values decreased, whereas color values, weight, and volume of cooked noodles increased, as did turbidity of the soup. In the texture meter test, hardness, cohesiveness, and springiness increased according to increasing concentrations of C. fulvescens powder. However, adhesiveness of noodles decreased by addition of C. fulvescens powder. Sensory evaluation showed that high quality cooked noodles could be produced by 3% inclusion of C. fulvescens powder.

Weldability and properties of lap joints by pin FSW with 1050 Al sheet (1050 Al판재의 핀 마찰 교반용접에 의한 실험적 연구)

  • Jang, Seok-Ki;Park, Jong-Seek;Han, Min-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.394-400
    • /
    • 2007
  • The properties and weldability of lap joints by PFSW with 1050 Al sheet was investigated according to tool shape. dimension and welding condition. Tensile shear test was carried out for lap jointed specimen, and the hardness in the joint regions was examined. Moreover interfacial joining length, metallograph and failure location of the lap-jointed cross section were discussed. Two tool types were a simple cylindrical type and a notched cylindrical type. Under joining conditions such as plunging depth of 2.2mm. rotating speed of 1600rpm and dwelling time of 3s, the tensile shear strength of lap-jointed specimen by the notched type tool was superior to that by simple cylindrical type tool. The maximum tensile shear load of lap jointed specimen was 5807N. Optimal dimensions of the notched type tool were as follows : diameters of the shoulder and pin were $18{\phi}mm$ and $10{\phi}mm$, and pin length was 2.2mm.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Effect of Aging Heat Treatment on the Mechanical Properties in Inconel 718 Alloy (Inconel 718 합금의 시효열처리가 기계적 성질에 미치는 영향)

  • Kang, Hee Jae;Kim, Jung Min;Jee, Sung Hwan;Sung, Jie Hyun;Kim, Young Hee;Sung, Jang Hyun;Jeon, Eon Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.271-277
    • /
    • 2013
  • Inconel 718 super alloy was aging heat treated at the temperature range from $675^{\circ}C$ to $785^{\circ}C$ for 5~40 hours after solution annealing at $1025^{\circ}C$ for 1 hour. The aging treated specimens were investigated microstructure, mechanical properties and thermal expansion/contraction. Precipitates appeared for a long time aging treatment were niobium carbide and also ${\gamma}^{\prime}$ phase. For the aging treatment time of 10 hours, the changes in strength and hardness with increasing aging treatment temperature showed the maximum value at the temperature of $725^{\circ}C$. This maximum value is to be related with the precipitation of ${\gamma}^{\prime}$ and ${\gamma}^{{\prime}{\prime}}$ phases. The decrease in strength, elongation and hardness during long time aging at $725^{\circ}C$ were thought to be induced from the coarsening of the grain size and the transformation of ${\gamma}^{{\prime}{\prime}}$ phase to ${\gamma}^{\prime}$ phase. For the specimens treated for 10 hours, impact energy showed constant value of ~105 J with increasing the aging temperature, however this value continuously decreased with elapsing time at the aging temperature of $725^{\circ}C$. It was found that the decrease in impact value was induced from the coarsening of grain size and the carbide coarsening. The coefficient of thermal expansion of aging treated Inconel 718 alloy increased with raising test temperature, and the coefficient was appeared $11.57{\sim}12.09{\mu}m/m{\cdot}^{\circ}C$ and $14.28{\sim}14.39{\mu}m/m{\cdot}^{\circ}C$, respectively, after heating to $150^{\circ}C$ and $450^{\circ}C$.

Impact Evaluation of Rubber Type, Hardness and Induced Prestress Force on the Dynamic Properties of a Damper (감쇠장치의 동적특성에 대한 고무의 종류, 경도 및 프리스트레스력의 영향 평가)

  • Im, Chae-Rim;Yang, Keun-Hyeok;Mun, Ju-Hyun;Won, Eun-Bee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.167-174
    • /
    • 2022
  • The objective of this study is to evaluate the dynamic properties of DUS (damping-up system) composed of the materials with excellent damping capacity, and to compare with those of the conventional hangar bolt. The main parameters are the type and hardness (𝜂H), of rubber and the prestress force (value converted from the compression strain (𝜂R) in the stress-strain relationship of rubber). The dynamic properties were examined from the natural frequency (𝜔n), maximum response acceleration (Am), amplification coefficient (𝛼p), maximum relative displacement (𝚫m), and damping ratio (𝜉D). The test results showed that the Am, 𝛼p, and 𝚫m values of DUS were 46.3%, 46.6% and 62.9% lower, respectively, and the 𝜉D value was 3.89 times higher, when compared to those of the conventional hangar bolt. In particular, the 𝛼p value was 1.3 for DUS, and 2.45 for the conventional hanger bolt, which were similar to those of rigid and flexible components specified in KDS 41 17 00, respectively. Consequently, in the optimal details of DUS, the 𝜂H values of 50 and 45 were required for the NR (natural rubber) and EPDM (ethylene propylene diene monomer), and the 𝜂R value of 5% was also recommended.

System Design and Performance Analysis of a Quick Freezer using Supercooling

  • Kim, Jinse;Chun, Ho Hyun;Park, Seokho;Choi, Dongsoo;Choi, Seung Ryul;Oh, Sungsik;Yoo, Seon Mi
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.330-335
    • /
    • 2014
  • Purpose: This study was conducted for enhancing the performance of a conventional quick freezer by introducing the supercooling state, using a low-temperature coolant. Methods: In the present investigation, the supercooling process was executed prior to quick freezing for reducing the time by which the temperature passes the zone of maximum ice crystal formation. Every food has different nucleation points and hence, we used silicone oil as the coolant for supercooling for easy modification of temperature. Additionally, for quick freezing, we used liquid nitrogen spray. Results: Using the heat exchanger-type precooler with silicone oil, the temperature of the chamber was easily changed for enabling supercooling. Particularly, the results of the freezing test with garlic indicated that this system improved the hardness of garlic after it was thawed, compared to the conventional freezing method. Conclusions: Before quick freezing, if the food item is subjected to the supercooling state, the time from nucleation to the temperature reaching the frozen state ($-5^{\circ}C$, which is the maximum ice crystal formation zone) will be shorter than that incurred using quick freezing alone. The combination of the heat exchanger-type supercooler and liquid nitrogen sprayer is expected to serve as a promising technology for improving the physicochemical qualities of frozen foods.

Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steels (1000MPa급 DP강 MIG 아크 브레이징 접합부의 기계적 성질에 미치는 브레이징 전류의 영향)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Mechanical properties and hardness distributions in arc brazed joints of Dual phase steel using Cu-Al insert metal were investigated. The maximum tensile shear load was 10.4kN at the highest brazing current. It was about 54% compared to tensile load of base metal. This joint efficiency is higher than that of joint of DP steel using Cu-based filler metals which are Cu-Si, Cu-Sn. Fracture positions can be divided into two types. Crack initiation commonly occurred at three point junction among upper sheet, lower sheet and the fusion zone. However crack propagations were different with increasing the brazing current. In case of the lower current, it instantaneously propagated along with the interface between fusion zone and upper base material. On the other hand, in case of higher current, a crack propagation occurred through fusion zone. When the brazing current is low (60, 70A), the interface shape is flat type. However the interface shape is rough type, when the brazing current is high (80A). It is thought that the interface shapes were the reason why the crack propagations were different with brazing current. The interface was the intermetallic compounds which consisted of $(Fe,Al)_{0.85}Cu_{0.15}$ IMC formed by crystallization at $1200^{\circ}C$during cooling. Therefore the maximum tensile shear load and the fracture behavior were determined by a interface shape and effective sheet thickness of the fracture position.

A Study on the Material Characteristics and the Welding Properties of 600MPa Grade Steel (SM 570 TMC) (600MPa급(SM 570 TMC) 강재의 소재 및 용접특성에 관한 연구)

  • Kim, Jong Rak;Kim, Sang Seup;Lee, Chul Ho;Lee, Eun Taik;Beak, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.773-781
    • /
    • 2008
  • As buildings are becoming taller and longer-spanned, the requirements of high-strength and reliable steels are becoming increasingly stringent. Structural steels, however, acquire significantly different mechanical properties when their strength becomes higher. In this study, the mechanical properties, welding characteristics, and conformities of the 600MPa-grade high-strength steel were tested. The 600MPa-grade steel plates exhibited stable criterion strengthvalues and showed low carbon equivalents (${\mathcal{Ceq}}$) and composition (${\mathcal{Pcm}}$) as well as excellent welding hardness. In the tensile strength test, all the specimens were found to have strengths of over 600MPa. In the Sharphy impact test, the impact-absorbed energy of the V-notch specimens was shown to be 47J at the KS limit. Moreover, the maximum hardness of the specimens in the weld-heat-affected zone at a normal temperature was the same as that before welding. Their weld metal properties, however, were found not to be as good as those of high-strength steel. As such, the details of high-strength steel must be determined.

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

Vibration Mode and Durability Characteristics of Automotive IDS using Rotary Swaging Process for Incremental Forming (로터리 스웨이징 공정의 점진성형에 의한 중공 드라이브샤프트의 진동모드 및 내구특성)

  • Lim Seong-Joo;Lee Nak-Kyu;Lee Chi-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.127-133
    • /
    • 2005
  • Rotary swaging is one of the incremental forming process which is a chipless process using the reduction of cross-sections of bars, tubes and wires. The TDS(Tube Drive Shaft) of monobloc used in automotive has been developed by the rotary swaging process. The mechanical characteristics of swaged parts such as the hardness, thickness and roughness are also estimated to conduct experimental analyses of rotary swaging process with the materials of 34Mn5 Furthermore the change in the vibration mode of TDS due to design parameters, which are the tube length, diameter and thickness, has been investigated and analysed. The weight of the TDS product is smaller by about $12.8\%$ than that of SDS with the same performance. It could be evidently found that the TDS is designed to be much lighter than SDS (Solid Drive Shaft). This advantage might give some possibility to improve the NVH (Noise-Vibration-Harshness) characteristics. A maximum torque and a total number of torsional repetitions for the TDS is checked and measured to know the torsional intensity and fatigue strength through the static torsion test and torsional durability test, respectively. A total number of the torsional repetitions up to the fracture for the TDS is greater than 250,000 times.