• Title/Summary/Keyword: Maximum Entropy Model

Search Result 135, Processing Time 0.022 seconds

A Study on the Application of Ecological Structural Dynamic Modelling (생태 모델링기법으로서 동적구조모형의 고찰)

  • Kim, Jwa-Kwan
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.4
    • /
    • pp.213-222
    • /
    • 2004
  • Exergy is defined as the amount of work (entropy-free energy) a system can perform when it is brought into thermodynamic equilibrium with its environment. Exergy measures the distance from the inorganic soup in energy terms. Therefore, exergy can be considered as fuel for any system that converts energy and matter in a metabolic process. The aim of this study is to introduce structural dynamic modelling which is based on maximum exergy principle. Especially, almost ecological models couldn't explain algal succession until now. New model (structural dynamic model) is anticipated to predict or explain the succession theory. If the new concept using maximum exergy principle is used, algal succession can be explained in many actual cases. Therefore, It is estimated that structural dynamic model using maximum exergy principle might be a excellent tool to understand succession of nature from now on.

Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm (엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The purpose of water distribution system is supplying water to users by maintaining appropriate pressure and water quality. For efficient monitoring of the water distribution system, determination of optimal locations for pressure monitoring is essential. In this study, entropy theory was applied to determine the optimal locations for pressure monitoring. The entropy which is defined as the amount of information was calculated from the pressure change due to the variation of demand reflected the abnormal conditions at nodes, and the emitter function (fire hydrant) was used to reproduce actual pressure change pattern in EPANET. The optimal combination of monitoring points for pressure detection was determined by selecting the nodes receiving maximum information from other nodes using genetic algorithm. The Ozger's and a real network were evaluated using the proposed model. From the results, it was found that the entropy theory can provide general guideline to select the locations of pressure sensors installation for optimal design and monitoring of the water distribution systems. During decision-making phase, optimal combination of monitoring points can be selected by comparing total amount of information at each point especially when there are some constraints of installation such as limitation of available budget.

Comparison of Species Distribution Models According to Location Data (위치자료의 종류에 따른 생물종 분포모형 비교 연구)

  • Seo, Chang-Wan;Park, Yu-Ri;Choi, Yun-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.59-64
    • /
    • 2008
  • We need to use the strength of each Species Distribution Model(SDM) because presence location data were only collected due to time and economic limitations in Korea. This study investigated and compared GAM(Generalized Additive Model) which is one of presence-absence models with Maxent(Maximum Entropy Model) which is one of presence only models according to location data(presence/absence data). The target species was Fisher(Martes pennanti) which is an endangered species in California, USA. We implemented environmental data such as topography, climate and vegetation, and applied models to sub-regions and study area. The results of this study were as follows. Firstly, GAM which used real presence and absence data was better than GAM which used pseudo-absence data and Maxent which used presence-only data. Secondly, Maxent was better than GAM when presence-only data were used. Lastly, each model which applied to different regions didn't predict other area well due to the difference of habitat environment and over-predicted outside of study area. We need to select an optimal model to predict a suitable habitat according to the type and distribution of location data.

  • PDF

A Study of Generalized Maximum Entropy Estimator for the Panel Regression Model (패널회귀모형에서 최대엔트로피 추정량에 관한 연구)

  • Song, Seuck-Heun;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.521-534
    • /
    • 2006
  • This paper considers a panel regression model with ill-posed data and proposes the generalized maximum entropy(GME) estimator of the unknown parameters. These are natural extensions from the biometries, statistics and econometrics literature. The performance of this estimator is investigated by using of Monte Carlo experiments. The results indicate that the GME method performs the best in estimating the unknown parameters.

Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance (오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구)

  • Cheon, Soo-Young;Lim, Seong-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.

Maximum Entropy Approach to Transmembrane Protein Prediction (최대 엔트로피 모델을 이용한 막횡단 단백질 예측)

  • Yoon, Sung-Hee;Cha, Jeong-Won;Park, Seung-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.664-666
    • /
    • 2005
  • 막횡단 단백질(Transmembrane Protein)은 약물표적(drug target)으로 신약개발로 대표되는 바이오 산업에서 중요한 연구대상이 되고 있다. 막횡단 단백질의 구조는 실험적 기법 또는 컴퓨터 모델링 기술을 이용하여 연구되고 있으며 컴퓨터 모델링 방법 중에서는 Hidden Markov Mode(HMM)에 기반한 시스템들이 좋은 성능을 보이고 있다. 그런데 이러한 시스템들은 구조형성에 관여하는 단백질의 다양한 특성에 대한 지식은 많이 고려하고 있지 않다. 만약 이러한 특성들이 고려된다면 구조 예측에 효과적인 보다 지능적인 모델을 만드는데 도움을 줄 수 있을 것이다. 본 논문은 단백질의 특성과 관련한 다양한 정보들을 융합하는데 효율적인 최대엔트로피모델(Maximum Entropy Model)을 이용하여 막횡단 단백질의 서열(sequence)로부터 막횡단 지역을 예측하는 방법을 제시하고자 한다.

  • PDF

Korean Sentence Classification System Using GloVe and Maximum Entropy Model (GloVe와 최대 엔트로피 모델을 이용한 한국어 문장 분류 시스템)

  • Park, IlNam;Choi, DongHyun;Shin, MyeongCheol;Kim, EungGyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.522-526
    • /
    • 2018
  • 본 연구는 수많은 챗봇이 생성될 수 있는 챗봇 빌더 시스템에서 저비용 컴퓨팅 파워에서도 구동 가능한 가벼운 문장 분류 시스템을 제안하며, 미등록어 처리를 위해 워드 임베딩 기법인 GloVe를 이용하여 문장 벡터를 생성하고 이를 추가 자질로 사용하는 방법을 소개한다. 제안한 방법으로 자체 구축한 테스트 말뭉치를 이용하여 성능을 평가해본 결과 최대 93.06% 성능을 보였으며, 자체 보유한 CNN 모델과의 비교 평가 결과 성능은 2.5% 낮지만, 모델 학습 속도는 25배, 학습 시 메모리 사용량은 6배, 생성된 모델 파일 크기는 302배나 효율성 있음을 보였다.

  • PDF

A Study on Power Spectral Estimation of Background EEG with Pisarenko Harmonic Decomposition (Pisarenko Harmonic Decomposition에 의한 배경 뇌파 파워 스팩트럼 추정에 관한 연구)

  • Jeong, Myeong-Jin;Hwang, Su-Yong;Choe, Gap-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 1987
  • The power spectrum of background EEG is estimated by the Plsarenko Harmonic Decomposition with the stochastic process whlch consists of the nonhamonic sinus Bid and the white nosie. The estimation results are examined and compared with the results from the maximum entropy spectral extimation, and the optimal order of this from the maximum entropy spectral extimation, and the optimal order of this model can be determined from the eigen value's fluctuation of autocorrelation of background EEG. From the comparing results, this method is possible to estimate the power spectrum of background EEG.

  • PDF

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt (MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측)

  • Taechul Park;Hojung Jang;SoEun Eom;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.214-223
    • /
    • 2022
  • Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.