• Title/Summary/Keyword: Maximum Drawing Depth

Search Result 21, Processing Time 0.028 seconds

Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals. (Part 1. Experiment) (알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구(제1부. 실험))

  • 류호연;배원택;김종호;김성민;구본영;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.45-52
    • /
    • 1998
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5052-H32 for improving deep drawability. Experiments for procucing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shape. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5052-H32 sheet, whereas LDR of A1050-H16 is 2.25, could be obtained and the former was 8 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5052-H32 material was also about 2 times deeper than the depth drawn at room temperature. The effects of blank shape, and temperature on drawability of aluminum materials as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

Improvement of Square Cup Drawability of Clad Sheet Metal by Warm Forming Technique (온간성형법에 의한 클래드 강판재의 정사각컵 드로잉성 향상에 관한 연구)

  • 류호연;김영은;김종호
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.253-260
    • /
    • 2001
  • This study was performed to investigate the optimized warm forming conditions which gave the maximum drawing depth in square cup drawing of clad sheet metals, by changing the temperatures of die and blankholder and also shapes and materials of blanks. Two kinds of clad sheet metals, STS304-A1050-STS304 and STS304-A1050-STS430 were selected for experiments. The relative drawing depth of STS304-A1050-STS304 clad sheet was increased up to 4.4 at $150^{\circ}C$ that was 29% higher than at room temperature, whereas STS304-A1050-STS430 material was improved to 3.9 at $120^{\circ}C$ which was 15% better than at room temperature. In addition, comparison of wall thickness and hardness of a warm drawn cup with those of room temperature showed more even distributions. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant test and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF

Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants (고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가)

  • Kim, H.K.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.

Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD (마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가)

  • Lee, M.H.;Kim, H.K.;Kim, H.K.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

Experimental Study on the Deep Drawing Process for L-shape Cross Section (L형 단면의 ?드로잉 가공에 대한 실험적 연구)

  • 김상진;양대호;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.281-287
    • /
    • 1996
  • Two kinds of blank shapes optimum and square are adopted to investigate formability. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup depth and strain distribution are measured experimentally for the products of the two kinds of blank shapes which are optimum and square. it is confirmed that deeper cup without severe thickness reduction can be obtained from the optimum shape.

  • PDF

Formability of deep drawing process for reentrant cross section (오목형 단면 딥드로잉에서의 성형성)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.138-144
    • /
    • 1996
  • The differences of formability with maximum cup depth of drawn product and thickness strain distribution are compared for two kinds of blank shapes which are suggested optimum shape and conventional square shape. The suggested blank is determined by backward tracing technique of rigid-plastic FEM. The deeper cup without wrinkle and flange part could be obtained from the suggested blank shape however the cross sevtion sup from the square blank could not be kept smooth thickness strain distribution and defended those phenomena..

  • PDF

A Programming of Hydrologic Analysis Procedure for the Probable Isohyetal Chart in Korea (한국 확률강우량도 작성을 위한 수문해석방법 개발)

  • 이원환
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 1987
  • The present study is to develop the hydrologic analysis procedure for the purpose of drawing the probable isohyetal charts in Korea. In the establishment of optimal distribution types, the eleven continuous probability distribution types included the transformed variable normal distribution (Y-k method) is applied to the annual maximum rainfall depth series in each duration. The optimal selection of distribution is done by Chi-square test and Kolmogorov-Smirnov test in the eui-class interval. The application of probability distribution is checked by the fitting on four durations of annual maximum rainfall data(10 min., 60 min., 6 hrs., and 24hrs.) at four meteorological stations in Korea (Seoul, In Cheon, Bu san, and Kwang Ju). The properties in hydrologic application of the considered distribution and the hydrologic characteristics of the applied rainfall data groups are investigated from the results of this study.

  • PDF

Analysis of the Structural Safety in a Non-heating Greenhouse with a Single Cover for Citrus Cultivation in Jeju (제주지역 감귤재배용 단일피복 무가온하우스의 구조안전성 분석)

  • Yum Sung Hyun;Kim Hak Joo;Chun Hee;Lee Si Young;Kang Yun Im;Kim Young Hyo;Kim Yong Ho
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.166-173
    • /
    • 2005
  • This study was carried out to evaluate the structural stability in a non-heating greenhouse with a single cover for Citrus cultivation which was built up in Jeju on the basis of the drawing designed by Jejudo Agricultural Research & Extension Services and also to make use of the data for developing a standardized non-heating greenhouse in Jeju. The analysis of a structural stability was conducted by using CFX-5.7 and ANSYS under the design condition of a maximum accumulated snow-depth of 19.1 cm as well as an instantaneous maximum wind velocity of $36.6\;m{\cdot}s^{-1}$ which was set up on the basis of meteorological statistics in Jeju. As a result, the maximum von-Mises stress applied on pipes under the wind velocity of $36.6\;m{\cdot}s^{-1}$ showed a value of $250\;N{\cdot}mm^{-2}$ which was greater than the allowable stress of the pipe with a value of $235.4\;N{\cdot}mm^{-2}$ (=$2,400\;kg{\cdot}cm^{-2}$) and also $53.8\;N{\cdot}mm^{-2}$ under the snow-depth of 19.1 cm, respectively. This result suggested that the greenhouse be unstable under the design condition of an instantaneous wind velocity of $36.6\;m{\cdot}s^{-1}$ so that it was necessary for the greenhouse to be reinforced to secure the structural stability.

Analysis Method of X-Ray Diffraction Characteristic Values and Measured Strain for Steep Stress Gradient of Metal Material Surface Layer (금속재료 표면층의 급격한 응력구배에 대한 X-Ray회절 특성값과 측정된 변형률의 해석방법)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.54-62
    • /
    • 2023
  • The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin2ψ method. When X-rays were used the relationship of εφψ-sin2ψ measured on the surface layer of the processing metal did not show linearity when the sin2ψ method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray, σφ becomes a sin2ψ function. Since σφ cannot be used as a constant, the relationship in εφψ-sin2ψ cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren's diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 Imax max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.

Parallel Flood Inundation Analysis using MPI Technique (MPI 기법을 이용한 병렬 홍수침수해석)

  • Park, Jae Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1051-1060
    • /
    • 2014
  • This study is attempted to realize an improved computation performance by combining the MPI (Message Passing Interface) Technique, a standard model of the parallel programming in the distributed memory environment, with the DHM(Diffusion Hydrodynamic Model), a inundation analysis model. With parallelizing inundation model, it compared with the existing calculation method about the results of applications to complicate and required long computing time problems. In addition, it attempted to prove the capability to estimate inundation extent, depth and speed-up computing time due to the flooding in protected lowlands and to validate the applicability of the parallel model to the actual flooding analysis by simulating based on various inundation scenarios. To verify the model developed in this study, it was applied to a hypothetical two-dimensional protected land and a real flooding case, and then actually verified the applicability of this model. As a result of this application, this model shows that the improvement effectiveness of calculation time is better up to the maximum of about 41% to 48% in using multi cores than a single core based on the same accuracy. The flood analysis model using the parallel technique in this study can be used for calculating flooding water depth, flooding areas, propagation speed of flooding waves, etc. with a shorter runtime with applying multi cores, and is expected to be actually used for promptly predicting real time flood forecasting and for drawing flood risk maps etc.