• Title/Summary/Keyword: Maximum Crack Length

Search Result 131, Processing Time 0.028 seconds

J-integral for subsurface crack in circular plate with inner hole under rolling and sliding contact (구름 및 미끄럼 접촉하의 중공원판의 표면하층균열에 대한 J-적분)

  • Lee, Kang-Yong;Kim, June-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1149-1155
    • /
    • 1997
  • J-integral for a subsurface horizontal crack in a circular plate with an inner hole under rolling line contact is evaluated according to loading positions with various load conditions, crack length and crack location. Two-dimensional crack is modeled, and the relation between Tresca stress for uncracked model and J-integral is discussed. The loading location which gives the maximum J-integral depends on load condition and crack location, and the presence of friction force increases Tresca stress and J-integral near the surface. Regardless of friction force, crack location that gives maximum J-integral is the same as that of maximum Tresca stress in an uncracked model, and the value of J-integral is propotional to crack length. It is also showed that the variation of an inner radius of a disk does not effect J-integral value.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Estimation of Maximum Crack Width Using Minimum Crack Spacing in Reinforced Concrete (철근 콘크리트부재에서 최소균열간격을 이용한 최대균열폭 산정)

  • 고원준;양동석;장원석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.903-908
    • /
    • 2001
  • This paper deals with the estimation of the maximum flexural crack widths using minimum crack spacing for reinforced concrete members. The proposed method utilizes the conventional crack and bond-slip theories as well as bonding transfer length and effects of creep and shrinkage between the reinforcement and concrete. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of mean bond stress. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major code specifications (e.g., ACI, CEB-FIP Model code, Eurocode 2, etc.). The analytical results of analysis presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of the reinforced concrete members.

  • PDF

Relationship between Crack Characteristics and Damage State of Strengthened Beam (보강된 보의 균열특성과 손상상태의 상관관계)

  • 한만엽;김상종
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.805-812
    • /
    • 2002
  • The number of old concrete structure which needs to be strengthened has been increased. The repair and strengthening methods have to be determined based on the current status of the structure. Consequently the estimation method for the damage status of the structure has been desperately needed, but no studies have been tried to use the crack and deflection characteristics to estimate the damage status. In this study, the crack characteristics depending on load level were measured and analysed. The crack characteristics observed from 11 samples were compared with damage status, and load level, The crack characteristics examined in this study include crack number, crack length, crack range, crack interval, maximum crack length, crack area, and average crack length. The deflections were normalized based on yield deflection, and the relationship between the relative deflection and the standardized crack characteristics were compared. Among the crack characteristics, crack interval, crack area, crack range, and maximum crack length, have been showed a close relationship to the relative deflection. Therefore, if such crack characteristics are evaluated, the maximum load applied to the structure is believed to be estimated. if additional parameters such as size of specimen, strength of concrete and steel, and steel ratio are studied, the damage status of structure can be estimated more accurately.

Study on Damage Evaluation Model for Reinforced Concrete Members (철근콘크리트 부재의 손상량 평가 모델에 관한 연구)

  • Cho, Byung Min;Maeda, Masaki;Kim, Taejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2015
  • The purpose of this study is to improve the previous damage evaluation model for RC members which is proposed by Igarashi[1] in 2010.The previous model was not confirmed by enough data of damage such as, residual crack length, width and area for exfoliation of concrete, etc. In addition, validation of the model is still insufficient. Therefore, experiment of a real-scale RC structure and experiment of RC columns using the high-strength concrete were conducted to gather the data of damage in RC members. The investigation has been conducted gathering the data not only additional experiments data but also existing data for modification of damage evaluation model. It has been investigated on changing damage in RC due to axial force ratio, shear reinforcement and shear span ratio. As a result, several problems were founded in the previous model, such as, hinge length($l_p$), spacing of flexural crack($S_{av,f}$), total width of flexural cracks regulated by maximum width of flexural crack($n_f$) and total width of shear cracks regulated by maximum width of shear crack($n_s$). New model is proposed and evaluated the damage properly.

용접부 쉐브론노치 형상에 대한 균열전파 특성

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.194-197
    • /
    • 1996
  • The high-strength aluminum alloy 7075-T651 was used to observe the fatigue-crack-propagation behavior for the various stress ratios with constant amplitude loading and thus to predict the fatigue life. With a chevron notch in the specimen the fatigue-crack-propagation behavior of through crack was investigated. Crack propagation behavior of through crack in the depth direction and crack growth of weldments were experimentally studied. Base material heat affected zone and weld material were considered in the fracture of weldments. The change of crack-propagation length with respect to several parameters such as stress intensity factor range(ΔK) effective stress intensity factor range(ΔKeff)ration of effective stress intensity factor range(U) stress intensity factor of crack opening point(K op) maximum stress intensity factor(K max) and number of cycles(Nf)was determined. The crack length of through crack of weldments was 2.4mm and the remaining part was a base material. The experiment was accomplished by making the crack propagate near the base material.

  • PDF

Fracture Behavior of Ceramic Coatings Subjected to Thermal Shock (열충격에 의한 세라믹코팅재의 파괴거동)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.39-43
    • /
    • 2003
  • An experimental study was conducted to develop and understanding of fracture behavior of ceramic thermal barrier coating when subjected to a thermal shock loading. The thermal loading was applied using a 1.5kW $CO_2$ laser. In the experiments, beam-shaped specimens were subjected to a high heat flux for 4sec and cooling of 7sec in air. The interface crack length was increased as the crack density, the surface pre-crack legth and the coating thickness were increased. The center surface crack length was increased as the maximum surface temperature got higher and the surface pre-crack length for shorter.

A Prediction of Crack Growth Path by Boundary Element Method (경계요소법(境界要素法)에 의한 균열 진전경로(進展經路)의 예측)

  • S.C.,Kim;W.K.,Lim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.39-46
    • /
    • 1988
  • The purpose of this paper is to apply the boundary element method to predict the crack growth path. The quarter point element with traction singularity at the crack tip is applied to compact tension type specimens and two inclined slit problems under compression load. The maximum stress criterion which was originally derived for the crack initiation is extended to the analysis of the crack propagation. The predicted crack paths with 1/4 crack growth increment of initial crack length agree quite well with experimental results. It is found that the computed crack path of the boundary element analysis is not mainly affected by the crack increment length.

  • PDF

Experimental study on fatigue crack propagation of fiber metal laminates

  • Xie, Zonghong;Peng, Fei;Zhao, Tianjiao
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.145-157
    • /
    • 2014
  • This study aimed to investigate the fatigue crack growth behavior of a kind of fiber metal laminates (FML) under four different stress levels. The FML specimen consists of three 2024-T3 aluminum alloy sheets and two layers of glass/epoxy composite lamina. Tensile-tensile cyclic fatigue tests were conducted on centrally notched specimen at four stress levels with various maximum values. A digital camera system was used to take photos of the propagating cracks on both sides of the specimens. Image processing software was adopted to accurately measure the length of the cracks on each photo. The test results show that: (1) a-N and da/dN-a curves of FML specimens can be divided into transient crack growth segment, steady state crack growth segment and accelerated crack growth segment; (2) compared to 2024-T3 aluminum alloy, the fatigue properties of FML are much better; (3) da/dN-${\Delta}K$ curves of FML specimens can be divided into fatigue crack growth rate decrease segment and fatigue crack growth rate increase segment; (3) the maximum stress level has a large influence on a-N, da/dN-a and da/dN-${\Delta}K$ curves of FML specimens; (4) the fatigue crack growth rate da/dN presents a nonlinear accelerated increasing trend to the maximum stress level; (5) the maximum stress level has an almost linear relationship with the stress intensity factor ${\Delta}K$.

ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP (부착응력-상대슬립을 이용한 휨균열폭 산정)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF