• Title/Summary/Keyword: Maximum Control Force

Search Result 348, Processing Time 0.024 seconds

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer and Speed Sensor-less Vector Control (부하토크외란관측기와 속도센서리스 벡터제어를 이용한 철도모의장치의 Anti-Slip 제어)

  • Lee S. C.;Kwon J. D.;Kim Y. K.;Jho J. M.;Jeon K. Y.;Lee S. H.;Oh B. H.;Lee H. G.;Kim Y. J.;Han K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.891-894
    • /
    • 2004
  • This paper estimate coefficient of adhesion through speed sensor-less vector control and load torque disturbance observer used for maximum tractive force control. And also proposes anti-slip control algorithm, which controls torque force of motor in order to keep the estimated adhesion force in maximum adhesion by controlling PI torque with the differential value of estimated adhesion force coefficient.

  • PDF

Distribution of Wind Force Coefficients on the Two-span Arched House (아치형 2연동하우스의 풍력계수 분포에 관한 연구)

  • 이석건;이현우
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.142-147
    • /
    • 1992
  • The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on the two-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated using the experimental data. The results obtained are as follows : 1. The variation of the wind force with wind directions on the side walls was the greatest at the upwind edge of the walls. 2. The maximum negative wind force along the length of the roof appeared at the upwind edge at the wind direction of 60$^{\circ}$. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and wind direction of 0$^{\circ}$ and 0.4 in the first house and 0.6 and 30$^{\circ}$ in the second house, respectively. 4. The mean negative wind force on the side walls of the first house at the wind direction of 0$^{\circ}$ was far greater than that of the second house, and the maximum negative wind force on the roof occurred at the wind direction of 30$^{\circ}$. 5. The maximum lift force appeared on the second house at the wind direction of 30$^{\circ}$, but the lift force on the first house was far greater than that on the second house at the wind direction of 0$^{\circ}$. 6. The parts to be considered for the local wind forces were the edges of the walls, and the edges of the x-direction and the width ratio, 0.4 of the y-direction in the roofs.

  • PDF

FUZZY POSITION/FORCE CONTROL OF MINIATURE GRIPPER DRVEN BY PIEZOELECTRIC BIMORPH ACTUATOR

  • Kim, Young-Chul;Chonan, Seiji;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.2-27
    • /
    • 1996
  • This paper is a study on the fuzzy force control of a miniature gripper driven by piezoelectric bimorph actuator. The system is composed of two flexible cantilevers, a stepping motor, a laser displacement transducer and two semiconductor force sensors attached to the beams. Obtained results show that the present artificial finger system works well as a miniature gripper, which produces approximately 0.06N force in the maximum. Further, the fuzzy position/force control algorithm is applied to the soft-handing gripper for stable grasping of a object. It revealed that the fuzzy rule-based controller be efficient controller for the stable drive of the flexible miniature gripper. It also showed that two semiconductor strain gauges located in the flexible beam play an important roles for force control, position control and vibration suppression control.

  • PDF

A Neurofuzzy Algorithm-Based Advanced Bilateral Controller for Telerobot Systems

  • Cha, Dong-hyuk;Cho, Hyung-Suck
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.100-107
    • /
    • 2002
  • The advanced bilateral control algorithm, which can enlarge a reflected force by combining force reflection and compliance control, greatly enhances workability in teleoperation. In this scheme the maximum boundaries of a compliance controller and a force reflection gain guaranteeing stability and good task performance greatly depend upon characteristics of a slave arm, a master arm, and an environment. These characteristics, however, are generally unknown in teleoperation. It is, therefore, very difficult to determine such maximum boundary of the gain. The paper presented a novel method for design of an advanced bilateral controller. The factors affecting task performance and stability in the advanced bilateral controller were analyzed and a design guideline was presented. The neurofuzzy compliance model (NFCM)-based bilateral control proposed herein is an algorithm designed to automatically determine the suitable compliance for a given task or environment. The NFCM, composed of a fuzzy logic controller (FLC) and a rule-learning mechanism, is used as a compliance controller. The FLC generates compliant motions according to contact forces. The rule-learning mechanism, which is based upon the reinforcement learning algorithm, trains the rule-base of the FLC until the given task is done successfully. Since the scheme allows the use of large force reflection gain, it can assure good task performance. Moreover, the scheme does not require any priori knowledge on a slave arm dynamics, a slave arm controller and an environment, and thus, it can be easily applied to the control of any telerobot systems. Through a series of experiments effectiveness of the proposed algorithm has been verified.

Improvement of Re-adhesion Control Performance Using Estimation of Maximum Adhesive Force (최대점착력 추정을 이용한 철도차량의 재정착제어 성능 개선)

  • Kim, Woo-Seok;Kim, Yong-Seok;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.163-167
    • /
    • 1998
  • In this paper an improved re-adhesion control scheme is proposed for IC4M(1-Controller 4-Motors) traction system. It is well known that the coefficient of adhesion between wheel and rail has a maximum value at a certain slip velocity. In the proposed scheme, maximum adhesive force is estimated by an observer and the driving torque of motor is controlled to set maximum adhesive force. The simulation results are presented.

  • PDF

An analytical expression for a dynamic optimal design of the stewart platform (스튜어트 플랫폼의 동역학적 최적설계를 위한 해석적인 표현)

  • Kwon, Byung-Hee;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.175-178
    • /
    • 1997
  • This study was carried out to obtain an analytical expression for the specifications of the Stewart Platform that minimize the maximum force acting on the hydraulic cylinder. The position and orientation of the platform were calculated by means of the inverse kinematic analysis. The maximum force to be exerted on a cylinder was calculated using the Newton's second law for the case when the platform is moved along a horizontal axis with 0.6 g, the maximum translational acceleration possible. This paper suggests a mathematical model to minimize the maximum actuating force using radius and angle ratios as design variables. Finally, a fuzzy set for the minimum actuating force is proposed for this dynamic optimal design problem.

  • PDF

Design of a Force Applying System for a Smart-phone Curved Glass Molding System and Its Characteristic Test (스마트폰 곡면유리 성형시스템의 가압장치 설계 및 곡면유리 성형특성실험)

  • Kim, Hyeon-Min;Hong, Tae-Kyung;Jung, Dong-Yean;Lee, Yeon-Hyeong;Park, Jea-Hyun;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.570-577
    • /
    • 2014
  • This paper describes the design of a force applying system for a smart phone curved glass molding system and its characteristic test. The force applying system is composed of a motor and gear, a rectilinear movement structure, a force sensor, an LVDT (Linear Variable Differential Transformer) sensor, an up and down moving block, and so on. The system precisely controls the applying force and time to the plane glass because the glass can be easily destroyed under applied force, and can be bent imperfectly. As a result of the characteristic test, the curved glass can be manufactured using this system, and the holding time under 0N force, the applying force to the plane glass, the time for applying from 0N to maximum force, and the holding time under maximum force at the manufacture feasible temperature $620^{\circ}C$ were found.

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate (무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어)

  • 김기만
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

추정된 절삭력 신호를 이용한 선삭력 제어

  • 허건수;김재옥
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.173-179
    • /
    • 2000
  • While a cutting tool is machining a workpiece at various cutting depth, the feedrate is usually selected based on the maximum depth of cut. Even if this selection can avoid power saturation or tool breakage, it is very conservative compared to the capacity of the machine tools and can reduce the productivity significantly. Many adaptive control techniques that can adjust the feedrate to maintain the constant cutting force have been reported. However, these controllers are not very widely used in manufacturing industry because of the limitations in measuring the cutting force signals. In this paper, turning force control systems based on the estimated cutting force signals are proposed. A synthesized cutting force monitor is introduced to estimate the cutting force as accurately as a dynamometer does. Three control strategies of PI, adaptive and fuzzy logic controllers are applied to investigate the feasibility of utilizing the estimated cutting force fur turning force control. The experimental results demonstrate that the proposed systems can be easily realized in CNC lathe with requiring little additional hardware.

  • PDF