• Title/Summary/Keyword: Maximin Distance Design

Search Result 5, Processing Time 0.016 seconds

Design of Experiment for kriging (크리깅의 실험계획법)

  • Jung, Jae-Joon;Lee, Chang-Seob;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1846-1851
    • /
    • 2003
  • Approximate optimization has become popular in engineering field such as MDO and Crash analysis which is time consuming. To accomplish efficient approximate optimization, accuracy of approximate model is very important. As surrogate model, Kriging have been widely used approximating highly nonlinear system . Because Kriging employs interpolation method, it is adequate for deterministic computer simulation. Because there are no random errors and measurement errors in deterministic computer simulation, instead of classical DOE ,space filling experiment design which fills uniformly design space should be applied. In this work, various space filling designs such as maximin distance design, maximum entropy design are reviewed. And new design improving maximum entropy design is suggested and compared.

  • PDF

Weight Function-based Sequential Maximin Distance Design to Enhance Accuracy and Robustness of Surrogate Model (대체모델의 정확성 및 강건성 향상을 위한 가중함수 기반 순차 최소거리최대화계획)

  • Jang, Junyong;Cho, Su-Gil;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.369-374
    • /
    • 2015
  • In order to efficiently optimize the problem involving complex computer codes or computationally expensive simulation, surrogate models are widely used. Because their accuracy significantly depends on sample points, many experimental designs have been proposed. One approach is the sequential design of experiments that consider existing information of responses. In earlier research, the correlation coefficients of the kriging surrogate model are introduced as weight parameters to define the scaled distance between sample points. However, if existing information is incorrect or lacking, new sample points can be misleading. Thus, our goal in this paper is to propose a weight function derived from correlation coefficients to generate new points robustly. To verify the performance of the proposed method, several existing sequential design methods are compared for use as mathematical examples.

Sensitivity Approach of Sequential Sampling Using Adaptive Distance Criterion (적응거리 조건을 이용한 순차적 실험계획의 민감도법)

  • Jung, Jae-Jun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1217-1224
    • /
    • 2005
  • To improve the accuracy of a metamodel, additional sample points can be selected by using a specified criterion, which is often called sequential sampling approach. Sequential sampling approach requires small computational cost compared to one-stage optimal sampling. It is also capable of monitoring the process of metamodeling by means of identifying an important design region for approximation and further refining the fidelity in the region. However, the existing critertia such as mean squared error, entropy and maximin distance essentially depend on the distance between previous selected sample points. Therefore, although sufficient sample points are selected, these sequential sampling strategies cannot guarantee the accuracy of metamodel in the nearby optimum points. This is because criteria of the existing sequential sampling approaches are inefficient to approximate extremum and inflection points of original model. In this research, new sequential sampling approach using the sensitivity of metamodel is proposed to reflect the response. Various functions that can represent a variety of features of engineering problems are used to validate the sensitivity approach. In addition to both root mean squared error and maximum error, the error of metamodel at optimum points is tested to access the superiority of the proposed approach. That is, optimum solutions to minimization of metamodel obtained from the proposed approach are compared with those of true functions. For comparison, both mean squared error approach and maximin distance approach are also examined.

Hybrid Constrained Extrapolation Experimental Design (하이브리드형 제약 외삽실험 계획법)

  • Kim, Young-Il;Jang, Dae-Heung
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.65-75
    • /
    • 2012
  • In setting an experimental design for the prediction outside the experimental region (extrapolation design), it is natural for the experimenter to be very careful about the validity of the model for the design because the experimenter is not certain whether the model can be extended beyond the design region or not. In this paper, a hybrid constrained type approach was adopted in dealing model uncertainty as well as the prediction error using the three basic principles available in literature, maxi-min, constrained, and compound design. Furthermore, the effect of the distance of the extrapolation design point from the design region is investigated. A search algorithm was used because the classical exchange algorithm was found to be complex due to the characteristic of the problem.

Comparisons of Experimental Designs and Modeling Approaches for Constructing War-game Meta-models (워게임 메타모델 수립을 위한 실험계획 및 모델링 방법에 관한 비교 연구)

  • Yoo, Kwon-Tae;Yum, Bong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.59-74
    • /
    • 2007
  • Computer simulation models are in general quite complex and time-consuming to run, and therefore, a simpler meta-model is usually constructed for further analysis. In this paper, JANUS, a war-game simulator, is used to describe a certain tank combat situation. Then, second-order response surface and artificial neural network meta-models are developed using the data from eight different experimental designs. Relative performances of the developed meta-models are compared in terms of the mean squared error of prediction. Computational results indicate that, for the given problem, the second-order response surface meta-model generally performs better than the neural network, and the orthogonal array-based Latin hypercube design(LHD) or LHD using maximin distance criterion may be recommended.