• 제목/요약/키워드: Maximal voluntary contraction

검색결과 143건 처리시간 0.024초

뇌졸중 환자의 비마비측 슬관절 등척성 수축시 각도와 운동 방향이 마비측 대퇴사두근 활성도에 미치는 영향 (Effects of Angle and Direction of Maximal Isometric Contraction of Non-Hemiparetic Knee on Electromyographic Activity of Hemiparetic Quadriceps Femoris in Patients With Stroke)

  • 기경일;김선엽;오덕원;최종덕;김경환
    • 한국전문물리치료학회지
    • /
    • 제17권2호
    • /
    • pp.1-9
    • /
    • 2010
  • To develop effective training methods for strengthening a weakened quadriceps femoris muscle in hemiplegic patients, we examined the effects of maximal isometric contraction of the nonparalyzed knee joint on the electromyographic activities of the paralytic muscle. An electromyogram (EMG) was used to record the electromyographic activities of the paralytic quadriceps femoris muscle in 27 hemiplegic patients. The maximal isometric contraction was measured for each subject to normalize the electromyographic activities. The maximal isometric extension and flexion exercises were randomly conducted when the knee joint angles of the nonparalyzed knees were $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. The patients were encouraged to maintain maximal isometric contractions in both knee joints during each measurement, and three measurements were taken. A one-minute rest interval was given between each measurement to minimize the effects of muscle fatigue. An average from the three values was taken as being the root mean square of the EMG and was recorded as being the maximal isometric contraction. The electromyographic activity obtained for each measurement was expressed as a percentage of the reference voluntary contraction, which was determined using the values obtained during the maximal isometric contraction. The results of this study are summarized as follows: First, when the knee joint angle of the nonparalyzed knee was $0^{\circ}$, the electromyographic activities of the paralytic medial aspect of rectus femoris were related to measurement by a maximal isometric flexion exercise than by an extension exercise (p<.05). Second, when the knee joint angle of the nonparalyzed knee was $90^{\circ}$, the electromyographic activities of the paralytic lateral aspect of rectus femoris were related to measurement by a maximal isometric flexion exercise than by an extension exercise (p<.05). The results show that myoelectrical activities of paralytic quardriceps were not related to measurement angles and exercise directions of the nonparalized knee joint. Studies on various indirect intervention to improve muscular strength of patients with nervous system disorders of the weakened muscle should be constantly conducted.

Effects of PNF Technique on Delayed Onset Muscle Soreness After Eccentric Exercise

  • Lee, Su-Young;Yi, Chung-Hwi;Choi, Mun-Suk
    • 한국전문물리치료학회지
    • /
    • 제14권4호
    • /
    • pp.1-6
    • /
    • 2007
  • This study examined the effects of hold-relax with agonist contraction (HR-AC) on the symptoms of delayed onset muscle soreness (DOMS) induced by intensive eccentric exercise of the non-dominant biceps brachii. Ten men (mean age=26.7 yrs, mean height=172.1 cm, mean weight=66.2 kg) and ten women (mean age=27.4 yrs, mean height=165.9 cm, mean weight=60.7 kg) who had not participated in a regular exercise program for the upper extremities in the previous six months were randomly assigned to one of two experimental groups: the HR-AC group, or the control group. We measured joint range of motion (ROM), maximal voluntary isometric contraction (MVIC), and muscle soreness before eccentric exercise, and 24, 48, and 72 hours after eccentric exercise. The subjects in the HR-AC group received the HR-AC technique in the non-dominant biceps brachii. The HR-AC technique was applied 24 and 48 hours after eccentric exercise. There was no significant difference between the HR-AC and the control group. However, the HR-AC group, compared to the control group, had a significant difference between the time points of the various parameters. Increased ROM (p<.05), decreased muscle soreness (p<.05), and reduced MVIC (p<.05) were found in the HR-AC group after 72 hours. Decreased ROM (p<.05) and MVIC (p<.05), and increased muscle soreness (p<.05) were observed in the control group. These findings suggest that the HR-AC technique effectively reduces muscle soreness and increases ROM 72 hours after eccentric exercise.

  • PDF

Effects of hand vibration on involuntary muscle contraction

  • 박희석
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.394-398
    • /
    • 1994
  • The aim of the present study was to determine the influence of vibration frequency and muscle contraction level at constant vibration displacement amplitudes on a commonly observed motor response elicited by local vibratory stimulation, i.e., the Tonic Vibration Reflex (TVR). Vibration was applied to the distal tendons of the hand flexor muscles. Changes in activity of the hand flexor and extensor muscles were analyzed as a function of the vibration frequency (40-200 Hz), displacement amplitude(200.mu.m and 300.mu.m peak-to-peak), and the initial contraction level of the flexor muscles (0%, 10%, and 20% of the maximal voluntary contraction: MVC). The main results indicate that the TVR increases with vibration frequency up to 100-150 Hz and decreases beyond, and the TVR attains its maximum at 10% MVC. It appears that high frequency vibration tends to induce less muscle/tendon stress. Such a result is of particular importance for the design of handheld vibrating tools.

최대 수의적 수축 동안 뒤넙다리근 근력 반복성의 남녀 차이 (Sex differences in repeatability of measurement for hamstring strength during maximal voluntary contractions)

  • 임우택
    • 대한물리치료과학회지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2020
  • Background: This study aimed to examine the repeatability of hamstring strength during maximal voluntary contractions (MVCs) and to examine the sex difference. Design: Quasi-experiment design. Methods: The study recruited 23 healthy young individuals as participants. Hamstring flexibility was measured before and after MVCs by active knee extension test. Five trials of MVCs were performed, and hip extension forces were measured using a strain gauge during MVCs. Repeatability was confirmed by intraclass correlation coefficient (ICC) and coefficient of variation, and the difference between male and female participants was confirmed by independent samples t-test. Results: The forces measured during MVCs were significantly different between men and women over five trials. We observed the minimum and maximum force production at the first and fifth trial of MVCs in both men and women. Excellent to moderate reliability of the hamstring strength during MVCs was found in men (ICC range, 0.70-0.98) and women (ICC range, 0.66-0.90). There was no significant difference in hamstring flexibility between men and women. Conclusion: In clinical settings, we recommend excluding the first trial of MVCs in both men and women. Additionally, performing at least three trials of MVCs would be useful to improve the reliability of the baseline measures in women.

복식호흡 운동이 요부근육의 활성화에 미치는 영향 (Effect of Diaphragmatic Breathing Exercise on Activation of Lumbar Paraspinal Muscles of Healthy people.)

  • 김경
    • 대한물리의학회지
    • /
    • 제1권1호
    • /
    • pp.59-66
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effects of diaphragmatic breathing on activation of lumbar paraspinal muscles of normal healthy people. Diaphragmatic breathing may affect activation of trunk muscles. The assumptions are as follows: the crural diaphragm attatches to the lumbar vertebrae from L1 to L3, the voluntary downward pressurization of the diaphragm increases intra-abdominal pressure, and this increases the stiffness of the spine. Methods : Sixty male college students ranging 19 to 34 years were screened and % maximal voluntary contraction(% MVC) of trunk muscles on the four positions of back extension exercise was compared during the pre and post of inspiration of diaphragmatic breathing. Results : 1. % MVC of right and left erector spinae had the statistically significant difference between pre and post inspiration of diaphragmatic breathing in the dynamic right arm and left leg extension position(p<0.05). 2. % MVC of right and left erector spinae had the statistically significant difference between pre and post inspiration of diaphragmatic breathing in the dynamic left arm and right leg extension position(p<0.05). 3. % MVC of right and left erector spinae had the statistically significant difference between pre and post inspiration of diaphragmatic breathing in the static lying prone extension position(p<0.05). 4. % MVC of right and left erector spinae had the statistically significant difference between pre and post inspiration of diaphragmatic breathing in the static lying on prone position(p<0.05). Conclusion : This study will be used as the purpose of data collection of lumbar paraspinal muscles on diaphragmatic breathing and be introduced as the new therapeutic intervention for management of patients with back pain.

  • PDF

Effects of cold water immersion and compression garment use after eccentric exercise on recovery

  • Maruyama, Tatsuhiro;Mizuno, Sahiro;Goto, Kazushige
    • 운동영양학회지
    • /
    • 제23권1호
    • /
    • pp.48-54
    • /
    • 2019
  • [Purpose] The combined effect of different types of post-exercise treatment has not been fully explored. We investigated the effect of combined cold water immersion (CWI) and compression garment (CG) use after maximal eccentric exercise on maximal muscle strength, indirect muscle damage markers in the blood, muscle thickness, and muscle soreness score 24 h after exercise. [Methods] Ten men performed two trials (CWI + CG and CON) in random order. In the CWI + CG trial, the subjects performed 15 min of CWI (15℃), followed by wearing of a lower-body CG for 24 h after exercise. In the CON trial, there was no post-exercise treatment. The exercise consisted of 6 × 10 maximal isokinetic (60°·s-1) eccentric knee extensions using one lower limb. The maximal voluntary contraction (MVC) and maximal isokinetic (60°·s-1) strength during knee extension, as well as the indirect muscle damage markers, were evaluated before exercise and 24 h after exercise. [Results] The maximal muscle strength decreased in both trials (p < 0.001), with no difference between them. The exercise-induced elevation in the myoglobin concentration tended to be lower in the CWI + CG trial than in the CON trial (p = 0.060). The difference in the MVC, maximal isokinetic strength, muscle thickness, and muscle soreness score between the trials was not significant. [Conclusion] CWI followed by wearing of a CG after maximal eccentric exercise tended to attenuate the exercise-induced elevation of indirect muscle damage markers in the blood.

The effects of neuromuscular electrical stimulation on skeletal muscle architecture and qualitative properties in vivo

  • Lee, Jeong-Woo;Yoon, Se-Won
    • International Journal of Contents
    • /
    • 제5권4호
    • /
    • pp.35-39
    • /
    • 2009
  • The purpose of this study was to evaluate the changes in skeletal muscle architecture and qualitative properties by muscle contraction force when neuromuscular electrical stimulation (NMES) of 50% MVIC was applied. Sixteen subjects (8 male, 8 female) without neuromuscular disease volunteered to participate in the study. All subjects were divided into two subgroups: control (no electrical stimulation) group and 50% maximal voluntary isometric contraction (MVIC) group. NMES training program was performed in the calf muscle three times a week for 10 weeks. Before and after the experiments, the MVIC of ankle plantar flexor was measured by the use of dynamometer, and the ultrasonography in the gastrocnemius medialis muscle was measured. The following results were obtained; MVIC was significantly increased in the electrical stimulation groups. Pennation angle, muscle density, and white area index also considerably changed in the electrical stimulation groups. In conclusion, the NMES training of 50% MVIC, comparative low level, improved the skeletal muscle architecture and the qualitative properties as well as the muscle contraction force.

Evaluation of the Contributions of Individual Finger Forces in Various Submaximal Grip Force Exertion Levels

  • Kong, Yong-Ku;Lee, Inseok;Lee, Juhee;Lee, Kyungsuk;Choi, Kyeong-Hee
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.361-370
    • /
    • 2016
  • Objective:The aim of this study is to evaluate contributions of individual finger forces associated with various levels of submaximal voluntary contraction tasks. Background: Although many researches for individual finger force have been conducted, most of the studies mainly focus on the maximal voluntary contraction. However, Information concerning individual finger forces during submaximal voluntary contraction is also very important for developing biomechanical models and for designing hand tools, work equipment, hand prostheses and robotic hands. Due to these reasons, studies on the contribution of individual finger force in submaximal grip force exertions should be fully considered. Method: A total of 60 healthy adults without any musculoskeletal disorders in the upper arms participated in this study. The young group (mean: 23.7 yrs) consisted of 30 healthy adults (15 males and 15 females), and the elderly group (mean: 75.2 yrs) was also composed of 30 participants (15 males and 15 females). A multi-Finger Force Measurement (MFFM) System developed by Kim and Kong (2008) was applied in order to measure total grip strength and individual finger forces. The participants were asked to exert a grip force attempting to minimize the difference between the target force and their exerted force for eight different target forces (5, 15, 25, 35, 45, 55, 65, and 75% MVCs). These target forces based on the maximum voluntary contraction, which were obtained from each participant, were randomly assigned in this study. Results: The contributions of middle and ring fingers to the total grip force represented an increasing trend as the target force level increased. On the other hand, the contributions of index and little fingers showed a decreasing trend as the target force level increased. In particular, Index finger exerted the largest contribution to the total grip force, followed by middle, ring and little fingers in the case of the smallest target force level (5% MVC), whereas middle finger showed the largest contribution, followed by ring, index and little fingers at the largest target force levels (65 and 75% MVCs). Conclusion: Each individual finger showed a different contribution pattern to the grip force exertion. As the target force level increase from 5 to 75% MVC, the contributions of middle and ring fingers showed an increasing trend, whereas the contributions of index and little fingers represented a decreasing trend in this study. Application: The results of this study can be useful information when designing robotic hands, hand tools and work equipment. Such information would be also useful when abnormal hand functions are evaluated.

The Effect of Short-term Muscle Vibration on Knee Joint Torque and Muscle Firing Patterns during a Maximal Voluntary Isometric Contraction

  • Lee, Jiseop;Song, Junkyung;Ahn, Jooeun;Park, Jaebum
    • 한국운동역학회지
    • /
    • 제27권2호
    • /
    • pp.83-90
    • /
    • 2017
  • Objective: To investigate the effect of short-term vibration frequencies on muscle force generation capabilities. Method: Six healthy participants were recruited for this study and only their dominant leg was tested. The subjects were tested under five conditions of vibration frequencies with constant amplitude: 0 Hz (no vibration), 30 Hz, 60 Hz, and 90 Hz, and the vibration amplitude was 10 mm for all frequency conditions. The vibration was applied to the rectus femoris (RF). The subjects were then instructed to maintain a steady-state isometric knee joint torque (100 Nm) for the first 6 s. After the steady-state torque production, the subjects were required to produce isometric knee joint torque by leg extension as hard as possible with a start signal within the next 3 s. The vibration was applied for ~4 s starting from 1 s before initiation of the change in the steady-state knee joint torque. Results: The results showed that the maximum voluntary torque (MVT) of the knee joint increased with the vibration frequencies. On average, the MVTs were 756.47 Nm for 0 Hz (no vibration) and 809.61 Nm for 90 Hz. There was a significant positive correlation (r = 0.71) between the MVTs and integrated electromyograms (iEMGs). Further, the co-contraction indices (CCIs) were computed, which represent the ratio of the iEMGs of the antagonist muscle to the iEMGs of all involved muscles. There was a significant negative correlation (r = 0.62) between the CCIs and MVTs, which was accompanied by a significant positive correlation (r = 0.69) between the iEMGs of the vibrated muscle (RF). There was no significant correlation between the MVTs and iEMGs of the antagonist muscle. Conclusion: The results of this study suggest that the short-term vibration on the muscle increases the level of muscle activation possibly owing to the increased Ia afferent activities, which enhances the muscle force generation capability.

Comparison of Muscle Activity and Input Performance of Operators Using a Computer Mouse and a Trackball

  • Yoo, Hwan-Suk;Yi, Chung-Hwi;Kwon, Ho-Yun;Jeon, Hye-Seon;Yoo, Won-Gyu
    • 한국전문물리치료학회지
    • /
    • 제16권4호
    • /
    • pp.37-43
    • /
    • 2009
  • This study compared the electromyographic activities and input performance of computer operators using a computer mouse and a trackball. Muscle activities were assessed at the upper trapezius (UT), middle deltoid (MD), extensor digitorum (ED), and first dorsal interosseous muscle (FDI). Twenty-six healthy subjects were recruited, and the test order was selected randomly for each subject. The task set was to click moving targets on a Windows program. The EMG amplitude was normalized using the percentage of reference voluntary contraction for UT and MD and the percentage of maximal voluntary contraction for ED and FDI. To analyze the differences in EMG activity, a paired t-test was used. UT muscle activities were significantly greater when the computer mouse was used (p<.05). FDI muscle activities were significantly greater when the trackball was used (p<.05). Using a trackball can reduce the load on the UT during computer work and help to prevent and manage work-related musculoskeletal disorders.

  • PDF