• Title/Summary/Keyword: Maxillary fracture

Search Result 216, Processing Time 0.022 seconds

A STUDY ON TOOTH FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (치아파절에 관한 3차원유한요소법적 연구)

  • Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.291-316
    • /
    • 1993
  • Restorative procedures can lead to tooth fracture due to the relatively small amount of the remaining tooth structure. It is essential to prevent fractures by having a clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, MO amalgam cavity were prepared on maxillary first premolar and filled with amalgam. Three dimensional, model with 1365 8-node brick elements was made by serial photographic method. In this model, isthmus was varied in width at 1/4, 1/3, 1/2 and 2/3 of intercuspal width and material properties were given for three element groups, i.e., enamel, dentin and amalgam. A load of 500 N was applied vertically on amalgam and enamel. In case of enamel loading, 2 model (with and without amalgam) was compared to consider the possibility of play at the interface between tooth material and amalgam. These models were analyzed with three dimensional finite element method. The results were as follows: 1. The stress was concentrated on the facio-pulpal line angle and distal marginal ridge of the cavity. 2. With the increase of the isthmus width, the stress spread around the facio-pulpal line angle and the area of stress concentration moved toward the proximal box. 3. In case of narrow isthmus width, the initiation point of crack would be in the area of isthmus corner of the cavity, and with the increase of the isthmus width, it would move toward the proximal box and at the same time the possibility of crack increase at the distal marginal ridge. 4. The direction of crack progressed outward and downward from the facio-pulpal line angle, and with the increase of the isthmus width, it approximated vertical direction. At the marginal ridge, it occurred in vertical direction. 5. It would be favorable to make the isthmus width narrower than a third of the intercuspal width, and to cover the cusp if isthmus width were wider than half of the intercuspal width. 6. It is necessary to apply the possibility of play to the finite element analysis.

  • PDF

A CLINICAL AND STATISTICAL STUDY OF MAXILLOFACIAL FRACTURE IN THE UIJUNGBU AREA (의정부지역의 악안면 골절에 대한 임상 통계적 연구)

  • Kim, Hyoun-Tae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.1
    • /
    • pp.63-68
    • /
    • 1991
  • The author has arrived at the following result after having carried out multilateral study based on a total of 282 maxillofacial fracture patients who have receive treatment at the Euijeongbu general hospital and Shinchun general hospital in the northern district of Kyunggido from march 1988 to august 1990. 1. Sex distribution of Mx. facial fx. patient was higher in male by 4.6:1 and was predominant in the 3rd decade with 40.4% followed in decreasing order by the 2nd decade and the 4th. 2. A majority were in the Mn. with 40.2% followed in decreasing order by zygoma. nasal bone and maxilla. 3. For the sex distribution according to anatomy, make to female ratio was 6.2:1 in the mandible, followed in decreasing order by zygoma, and nasal bone with predominance in male. 4. Car accident with 42.8% was the most common cause of fx. followed in decreasing order by violence, workmen's accident, and fall down. 5. The involvement of other trauma areas are head. 79.0%, abdomen-thorax, and the extremities in decreasing order. 6. In the mandibular fx. a majority were in the symphysis with 73.9% followed in decreasing order by angle, Condyle, and body. 7. Maxillary fx. of the type LeFort II was estimated to be 41.2% 8. Fracture in the zygoma including zygomatic arch was estimated to be 72.5%

  • PDF

FINITE ELEMENT STRESS ANALYSIS OF A CLASS II COMPOSITE RESIN RESTORATION (2급 와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Song, Bo-Kyung;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.627-643
    • /
    • 1995
  • The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on the maxillary left first molar and then filled with composite resin. Three dimentional model with 3049 nodes and 2450 8-node blick elements was made by the serial photographic method and isthmus (1/4, 1/3, 1/2 and 2/3 of intercusplal distance between mesiobuccal cusp tip and mesiolingual cusp tip) was varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 1500N was applied vertically on the node from the lingual slope of the mesiobuccal cusp. The results were as follows : 1. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 2. When it comes to stress distribution, the stress was concentrated in the facio-gingival line angle and the buccal side of the distal margin of the cavity in both Band R model. 3. With the increase of the isthmus width, the stress decreased in the area of the facio-gingival line angle, and increased in the area of facio-gingival line angle as well as the buccal side of the distal margin of the cavity in B model. In R model, the stress increased both in the area of facio-gingival line angle and the buccal side of the distal margin of the cavity, therefore the possibility of crack increased. 4. As the width of cavity increased, in B model, the direction of crack moved from horizontal to vertical on the facio-gingival line angle and the facio-pulpal line angle. In R model, the direction of the crack was horizontal on the facio-gingival line angle and moved from horizontal to the $45^{\circ}$ direction on the facio-pulpal line angle.

  • PDF

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN PORCELAIN LAMINATE VENEERS WITH VARIOUS AMOUNTS OF INCISAL COVERAGE AND TYPES OF INCISAL FINISH LINE UNDER TWO LOADING CONDITIONS (절단피개량과 절단변연형태 및 하중각도가 도재라미네이트 베니어 내의 응력분포에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Ryoo, Kyung-Hee;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.143-166
    • /
    • 1999
  • The success of porcelain laminate veneer depends on the bond strength between tooth structure and ceramic restoration and the design of tooth preparation. In particular, incisal coverage and incisal finish line are the two most important factors in long-term fracture resistance. Although the majority of clinicians are practicing incisal coverage and there are various opinions on the geo-metrical ratio between the clinical crown length of the remaining tooth structure and the length of incisal extension in porcelain laminate veneer and the optimal incisal finish lines. scientific evidence still loaves much to be desired. The purpose of this study was to determine the effects of the amounts of incisal coverage and the types of incisal finish line on the stress distribution in maxillary anterior porcelain laminate veneers under two different loading conditions. Three-dimensional finite element models of a maxillary anterior porcelain veneer with differ-ent amounts of incisal coverage ; 0, 1, 2, and 3mm and different incisal finish lines feathered edge, incisal bevel, reverse bevel and lingual chamfer with various amounts of lingual extension were developed. 300N force was applied at the point 0.5mm cervical of the linguoincisal edge in two loading conditions ; A) 125 degrees, B) 132 degrees. Tensile and compressive stress in ceramic and shear stress in the resin cement layer were analyzed using three-dimensional finite element method. The results were as follows : 1. The types of incisal finish line had more influence on the stress distribution in porcelain laminate veneer than the amounts of incisal coverage. 2. In case of no incisal coverage, incisal beveled laminate exhibited more evenly distributed tensile stress than feathered edged laminate. And in case of incisal coverage, reverse beveled laminate and lingual chamfered laminate with 1mm lingual extension exhibited more evenly distributed tensile stress than lingual chamfered laminates with 2mm and 3mm lingual extension. 3. As long as the lingual chamfer goes, less tensile stress was found at the incisal edge, while much more tensile stress was found at the lingual margin area in proportion to the length of lingual extension. 4. Under 125 degree load, tensile stress in porcelain laminate veneer had increased compared with that under 132 degree load and the difference exhibited by the change of the amount of tooth support was larger. 5. The types of incisal finish line and the distance from the incisal finish line to the loading point had more influence on the shear stress distribution in the resin cement layer than the amounts of incisal coverage. In contrast loading condition had little influence.

  • PDF

ANTERIOR ESTHETIC IMPROVEMENT THROUGH ORTHODONTIC EXTRUSIVE REMODELING AND SINGLE-UNIT IMPLANTATION IN A FRACTURED UPPER LATERAL INCISOR WITH ALVEOLAR BONE LOSS: A CASE REPORT (치은연하 파절로 치조골 소실을 동반한 상악측절치에서 orthodontic extrusive remodeling후 임플란트 식립을 통한 심미수복: 증례보고)

  • Hwang, Soo-Youn;Shon, Won-Jun;Han, Young-Chul;Bae, Kwang-Shik;Back, Seung-Ho;Lee, Woo-Cheol;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • The treatment of esthetic areas with single-tooth implants represents a new challenge for the clinician. In 1993, a modification of the forced eruption technique, called "orthodontic extrusive remodelling," was proposed as a way to augment both soft- and hard-tissue profiles at potential implant sites. This case report describes augmentation of the coronal soft and hard tissues around a fractured maxillary lateral incisor associated with alveolar bone loss, which was achieved by forced orthodontic extrusion before implant placement. Through these procedures we could reconstruct esthetics and function in a hopeless tooth diagnosed with subgingival root fracture by trauma.

Malunion of the Jaw Fractures Complicated Following the Primary Managements (악골절 치료후 부정유합에 관한 임상적 연구)

  • Kim, Dae-Sung;Kim, Myung-Rae;Choi, Jang-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.356-360
    • /
    • 1999
  • PURPOSE : This is to review the complicated jaw fractures that had been referred for revision of the unsatisfactory results, and to provide proper managements for the easily complicated jaw fractures. MATERIALS & METHODS : Twenty-nine patients who had been revised due to malunion or complicated fractures of facial bones for last 3 years were reviewed. The main problems required for revision, type of fractures complicated, the primary managements to be reclaimed, the specialties to be involved, the management to be reclaimed, time elapsed to seek reoperation, type of revision surgeries, residual complication were analysed with medical records, radiographs and final examinations. RESULTS: The major complaints were malocclusion(79.3%), facial disfigurement(41.3%), TMJ problems (13.7%), neurologic problems(10.3%), non-union(10.3%), and infection(6.8%). Unsatisfactory results were occurred most frequently after improper management of the multiple fractures of the mandible (62.2%), combined fractures of maxilla and mandible (20.6%), fracture of zygomatico-maxillary complex and midpalate (17.2%). The complications to be corrected were widened or collapsed dental arches (79.3%), improperly reduced condyles (41.3%), painful TMJ (34.4%), limited jaw excursion (31.0%), over-reduction of zygoma (13.7%), and nonunion with infection(13.7%). and dysesthesia (10.3%). The primary managements were nendereet by plastic surgeons in 82.7%(24/29) and by oral surgeons in 7.6%(2/29). Main causes of malunion are inadequate ORIF in 76%, unawareness & delay in 17%, and delayed due to systemic cares in 17%. 76% of 29 patients had been in state of intermaxillary fixation for over 4 weeks. Revision were done by means of "refracture and ORIF"in 48.2%(14/29), orthognathic osteotomies with bone grafts in 55.1%(16/29), and camouflage countering & alloplastic implantations in 37.9%(11/29), TMJ surgeries in 17.2%, micro-neurosurgeries in 11.6%. Residual complications were limited mouth opening in 24.1% (7/29), paresthesia in 13.7%, resorption of reduced condyle in 10.3%. CONCLUSIONS : Failure of initial treatment of jaw fractures is due to improper diagnosis and inadequate treatment with lack of sufficient knowledge of stomatognathic system. It is crucial to judge jaw fracture and patients accurately, moreover, the best way of treatments has to be selected. Consideration of these factors in treatment could minimize the complication of jaw fractures.

  • PDF

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO CAVITY DESIGN OF CLASS V COMPOSITE RESIN FILLING (5급와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun;Cho, Byeong-Hoon;Rim, Young-Il
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 1999
  • The use of composite restorative materials is established due to continuing improvements in the materials and restorative techniques. Composite resins are widely used for the restoration of cervical lesions because of esthetics, good physical properties and working time. There are several types of cavity design for class V composite resin filling, but inappropriate cavity form may affect bonding failure, microleakage and fracture during mastication. Cavity preparations for composite materials should be as conservative as possible. The extent of the preparation is usually determined by the size, shape, and location of the defect. The design of the cavity preparation to receive a composite restoration may vary depending on several factors. In this study, 5 types of class V cavity were prepared on each maxillary central incisor. The types are; 1) V-shape, 2) round(U) shape, 3) box form, 4) box form with incisal bevel and 5) box form with incisal bevel and grooves for axial line angles. After restoration, in order to observe the concentration of stress at bonding surfaces of teeth and restorations, developing a 2-dimensional finite element model of labiopalatal section in tooth, surrounding bone, periodontal ligament and gingiva, based on the measurements by Wheeler, loading force from direction of 45 degrees from lingual side near the incisal edge was applied. This study analysed Von Mises stress with SuperSap finite element analysis program(Algor Interactive System, Inc.). The results were as follows : 1. Stress concentration was prevalent at tooth-resin bonding surface of cervical side on each model. 2. In model 2 without line angle, stress was distributed evenly. 3. Preparing bevel eliminated stress concentration much or less at line angle. 4. Model with round-shape distributed stress concentration more evenly than box-type model with sharp line angle, therefore decreased possibility of fracture. 5. Adding grooves to line angles had no effect of decreasing stress concentration to the area.

  • PDF

The Efficacy of Bioabsorbable Mesh in Craniofacial Trauma Surgery

  • Choi, Won Chul;Choi, Hyun Gon;Kim, Jee Nam;Lee, Myung Cheol;Shin, Dong Hyeok;Kim, Soon Heum;Kim, Cheol Keun;Jo, Dong In
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.3
    • /
    • pp.135-139
    • /
    • 2016
  • Background: The ultimate goal of craniofacial reconstructive surgery is to achieve the most complete restoration of facial functions. A bioabsorbable fixation system which does not need secondary operation for implant removal has been developed in the last decade. The purpose of this study is to share the experience of authors and to demonstrate the efficacy of bioabsorbable mesh in a variety of craniofacial trauma operations. Methods: Between October 2008 and February 2015, bioabsorbable meshes were used to reconstruct various types of craniofacial bone fractures in 611 patients. Any displaced bone fragments were detached from the fracture site and fixed to the mesh. The resulting bone-mesh complex was designed and molded into an appropriate shape by the immersion in warm saline. The mesh was molded once again under simultaneous warm saline irrigation and suction. Results: In all patients, contour deformities were restored completely, and bone segments were fixed properly. The authors found that the bioabsorbable mesh provided rigid fixation without any evidence of integrity loss on postoperative computed tomography scans. Conclusion: Because bioabsorbable meshes are more flexible than bioabsorbable plates, they can be molded and could easily reconstruct the facial bone in three dimensions. Additionally, it is easy to attach bone fragments to the mesh. Bioabsorbable mesh and screws is effective and can be easily applied for fixation in various craniofacial trauma reconstructive scenarios.

A FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT ACCORDING TO ISTHMUS WIDTH OF GOLD INLAY CAVITY (금인레이 와동의 폭경에 따른 응력분포와 변위에 관한 유한요소법적 연구)

  • Shin, Gang-Suk;Cho, Young-Gon;Hwang, Ho-Keel
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.395-411
    • /
    • 1993
  • The purpose of this study was to examine the clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, the cavities were prepared on maxillary first premolar and filled with gold inaly. A two - dimensional model was composed of 1037 - node triangle elements. In this model, isthmus was varied in width at 1/4, 1/3 and 1/2 of intercuspal width and material properties were given for four element groups, i.e., enamel, dentin, pulp and gold. The 500N occlusal load varied in direction and it was examined using three types of load : concentrated load, divided load and distributed load. The models were also examined with empty cavities using the devided load and distributed load. These models were analyzed the displacement and strees distribution by the two - dimensional Finite Element Method. The results were as follows : 1. All experimental models which filled with gold inlay after cavity preparation were similar direction of displacement with control model under same load type. But in the models with empty cavities, as isthmus width was wider, the degree of displacement was increased at same load type. 2. Among the experimental models which were filled with gold inaly after cavity preparation, the model II showed the least stress concentration under concentrated load and divided load. But in the models with empty cavities, the model III showed the largest stress concentration and tooth fracture is expected regardless isthmus width. 3. All experimental models showed similar displacement pattern beneath restorative material under a concentrated load. In the models with empty cavities, a divided load resulted in a lingual displacement of the lingual cusp, but a distributed load resulted in a buccal displacement of the lingual cusp. In regard to the above results, the restored models were stronger than empty models in respect to the bending moment and tensile stress. The empty models are expected to fracture regardless isthmus width. The safest isthmus width was 1/3 of intercuspal distance, which showed the least stress concentration in respect to the effect of stress distribution.

  • PDF

THE OPTIMAL DESIGN OF CONNECTORS IN ALL CERAMIC FIXED PARTIAL DENTURES MANUFACTURED FROM ALUMINA TAPE (최적설계기법을 이용한 완전도재 가공의치의 연결부 형태 보강)

  • Oh Nam-Sik;Kim Han-Sung;Lee Myung-Hyun;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • Statements of problem: All ceramic fixed partial denture cores can be made by the slip casting method and the advanced alumina tape method. The fracture resistance of these core connector areas is relatively low. Purpose: The purpose of this study is to standardize the appropriate volumetric figure and location of the connectors in the alumina core fabricated in alumina tape to be used in fixed partial dentures by way of topology optimization. Material and method: A maxillary anterior three-unit bridge alumina core with teeth form and surrounding periodontal apparatus model was used to ultimately design the most structurally rigid form of the connector. Loadings from a $0^{\circ}$, $45^{\circ}$ and $60^{\circ}$ to the axis of each tooth were applied and analyzed with the 3-D finite element analysis method. Using the results from these experiments, the topology optimization was applied and the optimal reinforcement layout of connector was obtained and the detail shape in the fixed partial denture core was designed. Results: The modified prosthesis with the form of a bulk in the lower lingual surface of the connector in the event, reduced the stress concentration up to 20% in the 3-D FEA. Conclusion: The formation of a bulk in the lower lingual connector area of an alumina core for a fixed partial denture decreases the stress to a clinically favorable measure but does not harm the esthetic point of view. This result illustrates the possibility of clinical application of the modified form designed by the topology optimization method.