• Title/Summary/Keyword: Mature forest

Search Result 178, Processing Time 0.023 seconds

Studies on the Appraisal of Stumpage Value in the Forest Land - With Respect to Kyung-Ju Area - (산원지(山元地) 임목평가(林木平価)에 관(関)한 연구(研究) - 경주지방(慶州地方)을 중심(中心)으로 -)

  • Rha, Sang Soo;Park, Tai Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.37-49
    • /
    • 1981
  • The purpose of the study is to find out the objective method of valuation on the forest stands through the analysis of logging costs that is positively related to timber production. The two forest (Amgog, Whangryoung), located nereby, but forest type, logging and skidding conditions being slightly different, were slected to carry out the study. The objective timber stumpage value were determined by investigating the appropriate timber production costs and profits of logging operations. The main result obtained in this study are as follows: 1. The rate of logging cost in consisting of timber market price is 13.15% in the area of Amgog logging place and 19.48% in Whangryoung. 2. The rate of the other production cost excluding logging cost is 15.36% in the area of Amgog logging place and 28.85% in Whangryoung. 3. The total rate of timber production cost in consisting of the market price is more than 28.51% in the area of Amgog logging place and 48.33% in Whangryoung, 4. Though the productivity of forest land is affected by the selection of tree species, tending, treatments and effective management of forest land, the more important problem is improvement of logging condition. 5. The rate of production cost in timber price is so high that we should endeavore to improve the productivity of labour and its quality, and minimize the difference of piece work per day in accordance to the various site condition. 6. Although the profit of forest industry is related to the period of recapturing investment, it is more closely related to the working condition, risk of investment and continuous change of social investment interest. 7. If the right variables which are related to the timber market, are objectively obtained, the stumpage value of mature forests can be objectively caculated by applying straight line discounting method or compound discounting method in caculating the stump to market price.

  • PDF

Characteristics of Photosynthesis and Respiration Rates in Strobili of Pinus koraiensis S. et Z. (잣나무 구과(毬果)의 광합성(光合成)과 호흡(呼吸)의 특성(特性)에 관(關)한 연구(硏究))

  • Han, Sang Sup;Kim, Young Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.92-99
    • /
    • 1988
  • The dark respiration, photosynthesis($CO_2$ refixation), $CO_2$ balance and chlorophyll content of 1st-year conelets and 2nd-year cones of Korean pine(Pinus koraiensis S.et.Z.) were investigated after pollination up to the end of maturation. The results obtained are as follows : 1. The growth of 1st-year conelet was 3.6cm in length. 2.4cm in diameter and 3.058 in dry weighs during the first year. The growth of 2nd-year mature cone was 13.5cm in length, 9.3cm in diameter and 141.0g in dry weight in the late of 2nd-year. 2. The refixation of carbon dioxide released from a cone by the dark respiration was less than 50 percent at light saturation through the growing period. The refixation of carbon dioxide released by dark respiration for one year was 7.3 percent in 1st-year conelets and 8.7 percent in 2nd-year cones. 3. The dark respiration rate of cones by increasing temperature was rapidly increased with increasing temperature up to $25^{\circ}C$. The dark respiration rate of cones was much higher in non-growing season than that in growing season at the same temperature. 4. The rates of dark respiration and $CO_2$ refixation, based on the dry weight, were much higher in 1st-year conelet than that in 2nd-year cone. 5. The $CO_2$ balance for a cone was negative from pollination to the end of maturation. The net dark respiration loss for a cone was 7.23g $CO_2$/year in 1st-year conelet and 164.8g $CO_2$/year in 2nd-year cone. 6. The respiratory loss efficiency for a cone(=$CH_2O$ weight calculated by net dark respiration/dry weight of cone) for one year was 1.61 in 1st-year conelet and 0.81 in 2nd-year cone for one year. 7. The total chlorophyll content of surface scale of the cone was lower than 2mg/g dw through the growing period, and chl. a/b ratio was 2 to 3.

  • PDF

Improving Corsican pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology and germination

  • Wtpsk, Senarath;Shaw, D.S.;Lee, Kui-Jae;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.61-62
    • /
    • 2003
  • Clonal propagation of high-value forest trees through somatic embryogenesis (SE) has the potential to rapidly capture the benefits of breeding or genetic engineering programs and to improve raw material uniformity and quality. A major barrier to the commercialization of this technology is the low quality of the resulting embryos. Several factors limit commercialization of SE for Corsican pine, including low initiation rates, low culture survival, culture decline causing low or no embryo production, and inability of somatic embryos to fully mature, resulting in low germination and reduced vigour of somatic seedlings. The objective was to develop a Corsican pine maturation medium that would produce cotyledonary embryos capable of germination. Treatments were arranged in a completely randomized design. Data were analyzed by analysis of variance, and significant differences between treatments determined by multiple range test at P=0.05. Corsican pine (Pinus nigra var. maritima) cultures were initiated on modified !P6 medium. Modifications of the same media were used for culture multiplication and maintenance. Embryogenic cultures were maintained on the same medium semi solidified with 2.5 g/l Gelrite. A maturation medium, capable of promoting the development of Corsican pine somatic embryos that can germinate, is a combination of iP6 modified salts, 2% maltose, 13% polyethylene glycol (PEG), 5 mg!l abscisic acid (ABA), and 2.5 g/l Gelrite. After initiation and once enough tissue developed they were grown in liquid medium. Embryogenic cell suspensions were established by adding 0.951.05 g of 10- to 14-day-old semisolid-grown embryogenic tissue to 9 ml of liquid maintenance media in a 250ml Erlenmeyer flask. Cultures were then incubated in the dark at 2022$^{\circ}$C and rotated at 120 rpm. After 2.53 months on maturation medium, somatic embryos were selected that exhibited normal embryo shape. Ten embryos were placed horizontally on 20 ml of either germination medium ($\frac{2}{1}$strength Murashige and Skoog (1962) salts with 2.5 g/l activated charcoal) or same medium with copper sulphate adjusted to 0.25 mg/1 to compensate for copper adsorption by activated carbon. 2% and 4% maltose was substituted by 7.5% and 13% PEG respectively to improve the yield of the embryos. Substitution of' maltose with PEG was clearly beneficial to embryo development. When 2% of the maltose was replaced with 7.5% PEG, many embryos developed to large bullet-shaped embryos. At latter stages of development most embryos callused and stopped development. A few short, barrel-shaped cotyledonary embryos formed that were covered by callus on the sides and base. When 4% of the maltose was removed and substituted with 13% PEG, the embryos developed further, emerging from the callus and increasing yield slightly. Microscopic examination of the cultures showed differing morphologies, varying from mostly single cells or clumps to well-formed somatic embryos that resembled early zygotic embryos only liquid cultures with organized early-stag. A procedure for converting and acclimating germinants to growth in soil and greenhouse conditions is also tested. Seedling conversion and growth were highly related to the quality of the germinant at the time of planting. Germinants with larger shoots, longer, straighter hypocotyls and longer roots performed best. When mature zygotic embryos germinate the root emerges, before or coincident with the shoot. In contrast, somatic embryos germinate in reverse sequence, with the cotyledons greening first, then shoot emergence and then, much later, if at all, the appearance of the root. Somatic seedlings, produced from the maturation medium, showed 100% survival when planted in a field setting. Somatic seedlings showed normal yearly growth relative to standard seedlings from natural seed.

  • PDF

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective $P_2O_5$, PH, exchangeable, $K_2O$, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable $K_2O$, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective $P_2O_5$, soil texture, depth of A-horizon, Total Base, exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective $P_2O_5$, depth of A-horizon, exchangeable $K_2O$, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective $P_2O_5$ and exchangeable $K_2O$. In soil nutrients larch has been found out demanding more than the Korean white pine except $K_2O$, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

Factors Affecting Callus Culture and Plant Regeneration in Kentucky Bluegrass (켄터키 블루그래스에 있어서 캘러스 배양 및 식물체 재분화에 미치는 요인의 영향)

  • Lee, K.W.;Lee, S.H.;Lee, D.G.;Woo, H.S.;Kim, D.H.;Choi, M.S.;Won, S.H.;Seo, S.;Lee, B.H.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1067-1074
    • /
    • 2005
  • In order to optimize tissue culture conditions of Kentucky bluegrass(Poa pratensis L.), effects of culture medium supplements, media and cultivars on embryogenic callus induction and regeneration of plants were investigated. MS medium containing 3mg/L 2,4-D and 0.1mg/L BA was optimal for embryogenic callus induction from mature seeds. The highest plant regeneration frequency(57.7%) was observed when the embryogenic calli were cultured on N6 medium supplemented with 1mg/L 2,4-D and 3mg/L BA. Among several basic media, MS and N6 medium were optimal for callus induction and plant regeneration, respectively. Genotype was an important factor in plant regenerability. ‘Newport’ showed to have higher regeneration frequency of 53.4%. Regenerated plants were grown normally when shoots transplanted to the soil. A short tissue culture period and high-frequency regeneration system would be beneficial for molecular breeding of Kentucky bluegrass through genetic transformation.

모감주나무군락의 구조 및 유지기작

  • 이창석;김홍은;박현숙;강상준;조현제
    • The Korean Journal of Ecology
    • /
    • v.16 no.4
    • /
    • pp.377-395
    • /
    • 1993
  • Habitat types, community structure and population characteristics of Koelreuteria paniculata were investigated in Mt. Wolak, Chungbuk and Naesokdong, Daegu, which are natural habitats of the species in inland region of Korea, and its origin was discussed. Habitats of Koelreuteria paniculata were classified to 3 types: sand bar formed by the sands flooded in the course of flow of the mountain stream (Type 1). crevice on the rock bed within the mountain stream (Type 2) and crevice of the rock around the edge of mountain stream (Type 3). Most Koelreuteria paniculata communities in Mt. Wolak site were composed of 3 layers of subtree layer, shrub layer and herb layer and that of Daegu site was 4 layers including tree layer. In the floristic composition of the Koelreuteria paniculata community, plants occurring frequently in the wet and open site, such as Zelkova serrata and Fraxinus rhynchoph-vlla showed high frequency. Frequency distribution of diameter at ground surface of Koelreutrria paniculata showed reversed J-shaped type. It was supposed that expansion of Koelreuteria paniculata community in Mt. Wolak site might be accomplished by the flow of the stream. Many saplings capable of becoming a successor of mature trees in Daegu site in near degenerating phase were established on the forest floor of the Koelreuteria paniculata community. From this result, it was supposed that these saplings originated from the seeds dispersed from a seed tree might form the Koelreuteria paniculata community of the next generation. On the other hand, the origin of Koelreutevia paniculata in inland sites was explained by two hypotheses: the one was that Koelreuteria paniculata might be transplanted by human and the other was that the present site might be native habitat of the community.

  • PDF

Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus koraiensis - (도시 상록 조경수의 탄소저장 및 흡수 - 소나무와 잣나무를 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • This study generated regression models through a direct harvesting method to estimate carbon storage and uptake by Pinus densiflora and Pinus koraiensis, the major evergreen tree species in urban landscape, and established essential information to quantify carbon reduction by urban trees. Open-grown landscape tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the two species by using diameter at breast height (DBH) as an independent variable. All the regression models showed high fitness with $r^2$ values of higher than 0.98. While carbon storage and uptake by young trees tended to be greater for P. densiflora than for P. koraiensis in the same diameter sizes, those by mature trees with DBH sizes of larger than 20 cm showed results to the contrary due to a difference in growth rates. A tree of P. densiflora and P. koraiensis with DBH of 25 cm stored 115.6 kg and 130.0 kg of carbon, respectively, and annually sequestered 9.4 kg and 14.6 kg. The study has broken new grounds to overcome limitations of the past studies which quantified carbon reduction of the study species by substituting, due to a difficulty in direct cutting and root digging of landscape trees, coefficients from forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates.

19 years of change in community structure of Quercus acutissima dominant stand on Mt. Danseok-san in Gyeongju national park, South Korea (경주 단석산 상수리나무 우점식분 군집구조의 19년간의 변화)

  • Ko, Jae Ki
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.243-248
    • /
    • 2018
  • This study was carried out to clarify changes in community structure of Quercus acutissima dominant stand on the south slope of Mt. Danseok-san with fixed twenty quadrates. Five field surveys were conducted from Aug. 1999 to May 2018. During the period, the density lessened to 0.20 in 2012 comparing with 0.33 in 1999. However recent field study in 2018 showed moderate rising to 0.24. In 1999, the DBH class distribution of all trees formed reverse J curve. However, the reverse J curve was torn down, forming bell curve. In 2018, the curve showed similar shape of reverse J shape on the group of young trees, forming bell shape on the group of mature trees. It reveals that DBH 13cm is on the threshold of trees competition trend where the downtrend in the trees are on uptrend. The most dominant Q. acutissima formed bell curve. The peak of the curve shows the shift to the right of the graph as it gets lower by year.In case of Q. mongolica, shows a change in the shape of a low bell as the distribution curve increases. The oak stand in this study is in the process of changing from the initial stage of the secondary forest succession to the intermediate stage. The most dominant tree is Q. acutissima, and the sub-dominant tree is Q. mongolica in present. Considering the age distribution of the two competing tree species, the succession of this stand is expected to transfer to the Q. mongolica-dominant community.

Resistance Functions of Woody Landscape Plants to Air Pollutants (I) - SOD Activity - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 방어기능(防禦機能) (I) - SOD 활성(活性)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.164-176
    • /
    • 1992
  • This study was conducted to determine the toxic effects of air pollutants on landscaping trees, Pinus densiflora, Pinus koraierasis, Ginkgo biloba, Liriodeytdron tulipifera, Platanus occidentalis and their resistance to the pollutant toxicity in urban and industrial regions of Seoul and Taejon, Korea. Total sulfur content and superoxide dismutase activity were analysed in tree foliage of Pinus densiflora, Pinzes koraiensis, Ginkgo biloba, Liriodendron tulipifera, Platanus occidentalis. In addition, SOD activity was analyzed in the foliage of tree seedlings, i.e. Pinus densijlora, Pinus koraiensis, Ginkgo biloba, Liriodendron tulipifera, with the lurnigation of $SO_2$ in gas chamber 4 hours a day for six days. In all species total sulfur content and SOD activity had a positive correlation. Air pollutants accumulated in tree tissues were supposed to enhance the enzyme activity like SOD providing with the resistance mechanisms. Trees under the air pollution stress increased enzyme activity to develop internal self-resistance against pollutants, but after a critical point enzyme-activity decreased gradually and resulting in injury after all, Deciduous trees had greater filtration capacity than conifers and coniferous trees showed greater resistance against air pollutants than deciduous species. Foliage SOD activity was higher in polluted area than in unpolluted area for most species. Coniferous species and mature trees had higher SOD activity than deciduous seedlings. Especially Pinus koraiensis, Ginkgo biloba and Plcatanus occidentalis had higher SOD activity than other species. The tree species with the high SOD activity showed strong resistance against air pollutants. In 2nd-year needles of Pinus densiflora seedlings and current and 2nd-year needles of Pinus koraiensis seedlings containing high native SOD activity, SOD activity increased with the increase of $SO_2$ level. But in seedlings containing low native SOD activity, SOD activity increased at 0.5ppm $SO_2$ level while it decreased at 1.5 and 2.5ppm $SO_2$. Changes of SOD activity was different between species and in most species SOD seemed to participate in resistance mechanism.

  • PDF

Effects of Cutting Time, Auxin Treatment, and Cutting Position on Rooting of the Green-wood Cuttings and Growth Characteristics of Transplanted Cuttings in the Adult Prunus yedoensis (왕벚나무 성목 녹지삽목에서 삽목시기, 옥신처리 및 삽수부위가 발근에 미치는 영향과 이식 삽목묘의 생육특성)

  • Kim, Chang-Soo;Kim, Zin-Suh
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • This study was conducted to develop an efficient mass propagation method for the mature $Prunus$ $yedoensis$ Matsumura (43 to 58 years old). Cutting was conducted depending on cutting time, auxin treatments (IBA and NAA treatments mixed with talc powder), and cuttings position on shoots in a plastic house equipped with a fog system without heating. Rooted cuttings were transplanted to a nursery bed, and their growth characteristics were investigated in order to check whether the cuttings are successful or not for roadside tree planting. The average rooting rate was highly significant ($P$ < 0.0001) in all treatments: cutting on June 1st (61.4%) was more than two times greater in rooting rate than that on August 1st (23.6%); IBA 1,000 $mg{\cdot}L^{-1}$ (90.8%) and IBA 500 $mg{\cdot}L^{-1}$ (89.2%) showed much greater rooting rates than those of the other treatments; upper part of the cuttings treated with IBA 1,000 $mg{\cdot}L^{-1}$ showed the highest rooting rate, 96.7%. The interactions among treatments in the average rooting rate were also significant. There were significant differences ($P$ < 0.0001) among the auxin treatments in the survival rate of leafed cuttings transplanted to a nursery bed. The average survival rate was 46.5%, and IBA 1,000 $mg{\cdot}L^{-1}$ treatment was the highest in leafed cuttings 79.2%, but most of leafless cuttings were dead. There were significant differences ($P$ < 0.0001) among the cuttings, grafts, and in the seedlings height, diameter at root collar, the number of roots, branches, and leaves, etc., and the cuttings was the best. We can expect a possibility of mass propagation of improved $P.$ $yedoensis$ Matsumura and a high planting survival rate through the transplanting of cuttings to a nursery bed in which the cuttings should be the following conditions: cutting in June to July, use of the upper part of cuttings, IBA treatment, and rooting in August in a cutting-greenhouse equipped with a fog system.