• Title/Summary/Keyword: Matrix rectifier

Search Result 17, Processing Time 0.023 seconds

A New Reduced Common-mode Voltage SVM Method for Indirect Matrix Converters with Output Current Ripple Minimization

  • Tran, Quoc-Hoan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.383-384
    • /
    • 2015
  • This paper presents a new space vector modulation (SVM) method for indirect matrix converters (IMCs) to reduce commonmode voltage as well as minimize output current ripple in a high voltage transfer ratio. In the proposed SVM, the three-vector modulation scheme is used in the rectifier stage, while the nonzero state modulation technique, where the three nearest active vectors are selected to synthesize the desired output voltage, is applied to inverter stage to reduce the CMV. The proposed SVM method can significantly reduce the output current ripple and common-mode voltage of the IMC without any extra hardware. Simulated results are provided to demonstrate the effectiveness of the proposed SVM method.

  • PDF

Real-Time Power Electronics Remote Wiring and Measurement Laboratory (PermLAB) Using 3-D Matrix Switching Algorithms

  • Asumadu, Johnson A.;Tanner, Ralph;Ogunley, Hakeem
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.611-620
    • /
    • 2010
  • This paper presents a new architecture, called "Power Electronics Remote Wiring and Measurement Laboratory (PermLAB)", that translates a common gateway interface (CGI) string from a remote web user to a web server connected to a 3-dimension switching matrix board, can be used to switch on and off, and to control a cluster of instruments and components. PermLAB addresses real-time connection, switching, and data acquisition over the Internet instead of using simulated data. A software procedure uses a signature system to identify each instrument and component in a complex system. The Web-server application is developed in HTML, JavaScript and Java, and in C language for the CGI interface, which resides in a controller portion of LabVIEW. The LabVIEW software fully integrates the Web sever, LabVIEW data acquisition boards and controllers, and the 3-dimensional switching matrix board. The paper will analyze a half-wave rectifier (AC - DC converter) circuit connected over the Internet using the PermLAB. PermLAB allows students to obtain real data by real-time wiring of real circuits in the laboratory using a "virtual breadboard" on the Web. The software for the Web-based 3-dimensional system is flexible, portable, can be integrated into many laboratory applications or expanded, and easily accessible worldwide.

Application of Fuzzy Integral Control for Output Regulation of Asymmetric Half-Bridge DC/DC Converter with Current Doubler Rectifier

  • Chung, Gyo-Bum;Kwack, Sun-Geun
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.238-245
    • /
    • 2007
  • This paper considers the problem of regulating the output voltage of a current doubler rectified asymmetric half-bridge (CDRAHB) DC/DC converter via fuzzy integral control. First, we model the dynamic characteristics of the CDRAHB converter with the state-space averaging method, and after introducing an additional integral state of the output regulation error, we obtain the Takagi-Sugeno (TS) fuzzy model for the augmented system. Second, the concept of parallel distributed compensation is applied to the design of the TS fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, numerical simulations of the considered design method are compared to those of the conventional method, in which a compensated error amplifier is designed for the stability of the feedback control loop.

The Speed Control for Direct Current Motors Using Matrix Converter Topology (매트릭스 컨버터 토폴로지를 이용한 직류전동기 속도제어)

  • Jeong, Bum-dong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.238-245
    • /
    • 2018
  • This paper proposes the applicability of matrix converter topology for the speed control of direct current motors. Matrix convertesr are divided into direct and indirect components. This paper utilizes an indirect matrix converter which is expected to be used widely because of making a variety of output side. The proposed converter has advantages which improves input current shape, has no large energy storage component causing short life. Simulation results are provided to verify effectiveness by comparing and analyzing features of the proposed and conventional topology. The proposed method shows similar performance for speed control, torque control, and load current control compared to a conventional method. Furthermore Harmonics are greatly reduced because the input current is controlled in a manner similar to sinusoidal wave by directly controlling switches at the rectifier stage.

Torque Predictive Control for Permanent Magnet Synchronous Motor Drives Using Indirect Matrix Converter

  • Bak, Yeongsu;Jang, Yun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1536-1543
    • /
    • 2019
  • This paper presents an improved torque predictive control (TPC) for permanent magnet synchronous motors (PMSMs) using an indirect matrix converter (IMC). The IMC has characteristics such as a high power density and sinusoidal waveforms of the input-output currents. Additionally, this configuration does not have any DC-link capacitors. Due to these advantages of the IMC, it is used in various application field such as electric vehicles and railway cars. Recently, research on various torque control methods for PMSM drives using an IMC is being actively pursued. In this paper, an improved TPC method for PMSM drives using an IMC is proposed. In the improved TPC method, the magnitudes of the voltage vectors applied to control the torque and flux of the PMSM are adjusted depending on the PMSM torque control such as the steady state and transient response. Therefore, it is able to reduce the ripples of the output current and torque in the low-speed and high-speed load ranges. Additionally, the improved TPC can improve the dynamic torque response when compared with the conventional TPC. The effectiveness of the improved TPC method is verified by experimental results.

Circuit DQ Modeling and Analysis of Operating Characteristics for Hybrid Cascade Five-level PWM Rectifier (하이브리드 Cascade 5-레벨 PWM 정류기의 회로 DQ모델링 및 동작특성 해석)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.817-824
    • /
    • 2000
  • This paper presents circuit DQ modeling and analysis of operating characteristics of hybrid cascade multilevel PWM rectifier, especially five-level, without isolation transformers. The circuit DQ transformation changes the original three-phase time varying circuit to stationary equivalent one by employing the synchronously rotating transformation matrix. As a result of circuit DQ modeling, the operating characteristics and some useful design relationships for the system are obtained with ease. That is, the analytic equations for DC voltages and active/reactive power supplied by source with respect to control variables are Presented. Moreover, the DC voltages for the multilevel output generation may be directly built up from AC utility source and the important control equation ensuring 5-level output voltage is obtained. Finally, to confirm the validity of the analysis, MATLAB simulations are carried out and the simulation results show good agreements between analytic predictions and the simulated waveforms.

  • PDF

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.