• Title/Summary/Keyword: Matrix metalloproteinases (MMPs)

Search Result 224, Processing Time 0.026 seconds

The Effect of Interferon-γ on Bleomycin Induced Pulmonary Fibrosis in the Rat (Interferon-γ 투여가 쥐에서의 Bleomycin 유도 폐 섬유화에 미치는 영향)

  • Yoon, Hyoung Kyu;Kim, Yong Hyun;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.1
    • /
    • pp.51-66
    • /
    • 2004
  • Objectives : The matrix metalloproteinases (MMPs) that participate in the extracellular matrix metabolism play a important role in the progression of pulmonary fibrosis. The effects of the MMPs are regulated by several factors including Th-1 cytokines, $interferon-{\gamma}$ ($IFN-{\gamma}$). Up to now, $IFN-{\gamma}$ is known to inhibit pulmonary fibrosis, but little is known regarding the exact effect of $IFN-{\gamma}$ on the regulation of the MMPs. This study investigated the effects of $interferon-{\gamma}$ on the pulmonary fibrosis and the expression of the lung MMP-2,-9, TIMP-1,-2, and Th-2 cytokines in aa rat model of bleomycin induced pulmonary fibrosis. Materials and methods : Male, specific pathogen-free Sprague-Dawley rats were subjected to an intratracheal bleomycin instillation. The rats were randomized to a saline control, a bleomycin treated, and a bleomycin+$IFN-{\gamma}$ treated group. The bleomycin+$IFN-{\gamma}$ treated group was subjected to an intramuscular injection of $IFN-{\gamma}$ for 14 days. At 3, 7, 14, and 28 days after the bleomycin instillation, the rats were sacrificed and the lungs were harvested. In order to evaluate the effects of the $IFN-{\gamma}$ on lung fibrosis and inflammation, the lung hydroxyproline content, inflammation and fibrosis score were measured. Western blotting, zymography and reverse zymography were performed at 3, 7, 14, 28 days after bleomycin instillation in order to evaluate the MMP-2,-9, and TIMP-1,-2 expression level. ELISA was performed to determine the IL-4 and IL-13 level in a lung homogenate. Results : 1. 7 days after bleomycin instillation, inflammatory changes were more severe in the bleomycin+$IFN-{\gamma}$ group than the bleomycin group (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$2.08{\pm}0.15:2.74{\pm}0.29$, P<0.05), but 28 days after bleomycin instillation, lung fibrosis was significantly reduced as a result of the $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$3.94{\pm}0.43:2.64{\pm}0.13$, P<0.05). 2. 28 days after bleomycin instillation, the lung hydroxyproline content was significantly reduced as a result of $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$294.04{\pm}31.73{\mu}g/g:194.92{\pm}15.51{\mu}g/g$, P<0.05). 3. Western blotting showed that the MMP-2 level was increased as a result of the bleomycin instillation and highest in the 14 days after bleomycin instillation. 4. In zymography, the active forms of MMP-2 were significantly increased as a result of the $IFN-{\gamma}$ treatment 3 days after the bleomycin instillation, bleomycin+$IFN-{\gamma}$ group (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$209.63{\pm}7.60%:407.66{\pm}85.34%$, P<0.05), but 14 days after the bleomycin instillation, the active forms of MMP-2 were significantly reduced as a result of the $IFN-{\gamma}$ treatment (bleomycin group : bleomycin+$IFN-{\gamma}$ group=$159.36{\pm}20.93%:97.23{\pm}12.50%$, P<0.05). 5. The IL-4 levels were lower in the bleomycin and bleomycin+$IFN-{\gamma}$ groups but this was not significant, and the IL-13 levels showed no difference between the experiment groups. Conclusion : The author found that lung inflammation was increased in the early period but the pulmonary fibrosis was inhibited in the late stage as a result of $IFN-{\gamma}$. The inhibition of pulmonary fibrosis by $IFN-{\gamma}$ appeared to be associated with the inhibition of MMP-2 activation by $IFN-{\gamma}$. Further studies on the mechanism of the regulation of MMP-2 activation and the effects of MMP-2 activation on pulmonary fibrosis is warranted in the future.

Effects of the Draronis sanguis on Antioxidation and MMP-1 Expression in Human Dermal Fibroblast (혈갈(Draconis Sanguis)의 항산화와 사람섬유아세포에서 MMP-1 발현저해 효과)

  • Sim Gwan Sub;Kim Jin Hui;Kim Jin Hwa;Lee Dong Hawn;Park Sung Min;Lee Bum Chun;Pyo Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.439-444
    • /
    • 2004
  • UV irradiation produces free radicals and related reactive oxygen species (ROS), and these are injury to all most of organisms of skin cells and extracellular matrix (ECM). In addition, free radicals and ROS stimulate the overexpression of matrix metalloproteinases (MMPs) that can degrade most components of ECM such as collagen. Since collagen constitutes almost of skin connective tissue, their disarrangement causes wrinkle formation and droop of skin. Therefore, scavenging activity on free radicals, ROS and suppression of MMP-1 is expected to prevent skin photoaging. In this study, to investigate the relationship between photoaging and Draconis sanguis, we examined the effects of antioxidant, in vitro MMP inhibition and expression of UVA-induced MMP-1 in human dermal fibroblasts. Draconis sanguis was found to show scavenging activities of radicals and ROS with the $IC_{50}$ values of $183{\;}{\mu}g/mL$ against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and $30{\;}{\mu}g/mL$ against superoxide radicals in the xanthine/xanthine oxidase system, respectively. Draconis sunguis inhibited the activities of MMP-1 in a does-dependent manner and the $IC_{50}$ value calculated from semi-log plots was $200{\;}{\mu}g/mL$. Also, UVA induced MMP expression was reduced $74\%$ by treatment with Draconis sanguis, and MMP-1 mRNA expression was reduced in a dose-dependent manner. Therefore Draconis sanguis was able to significantly inhibit MMP expression in protein and mRNA level. All these results suggested that Draconis sanguis may act as an anti-photoaging agent by antioxidation and reducing UVA-induced MMP-1 production.

The Anti-angiogenic Potential of a Phellodendron amurense Hot Water Extract in Vitro and ex Vivo (in Vitro와 ex vivo에서 황백 온수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Bae, Kiho;Kim, Han Sung;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.693-702
    • /
    • 2015
  • Blocking new blood-vessel formation (angiogenesis) is now recognized as a useful approach to the therapeutic treatment of many solid tumors. The best validated approach to date is to target the vascular endothelial growth-factor (VEGF) pathway, a key regulator of angiogenesis. Many natural products and extracts that contain a variety of chemopreventive compounds have been shown to suppress the development of malignancies through their anti-angiogenic properties. Phellodendron amurense, which is widely used in Korean traditional medicine, has been shown to possess antitumor, antimicrobial, and anti-inflammatory properties, among others. The present study investigated the effects of P. amurense hot-water extract (PAHWE) on angiogenesis, a key process in tumor growth, invasion, and metastasis. To investigate PAHWE’s anti-angiogenic properties, this study’s authors performed an analysis of angiogenesis and endothelial-cell proliferation, migration, invasion, and tube formation, as well as zymogram assays and the rat aortic ring-sprouting assay. PAHWE inhibited cell growth, mobility, and vessel formation in response to VEGF in vitro and ex vivo. Furthermore, it reduced VEGF-induced intracellular signaling events, such as the activation of matrix metalloproteinases (MMPs) -2 and -9. These results indicate that PAHWE’s anti-angiogenic properties might lead to the development of potential drugs for treating angiogenesis-associated diseases such as cancer.

Antioxidant and Antiwrinkle Effects of Persimmon Leaves extract (시엽(Persimmon Leaves) 에탄올 추출물의 항산화와 항주름 효과)

  • Sung-Hee Kim;Dong-Hee Kim;Wi-Hye Yeon;Jin-Tae Lee;Young-Ah Jang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.534-546
    • /
    • 2023
  • In this study, we investigated the antioxidant and anti-winkle activity in human fibroblast cell (CCD-986sk) of Persimmon Leaves (PL) as a cosmetic ingredient. As a result of investigating antioxidant activity through electron-donating ability and ABTS+ radical scavenging assay, the PL showed concentration-dependent antioxidant activity similar to ascorbic acid, a control group, at a concentration of 1,000 ㎍/ml. As a result of investigating the anti-wrinkle effect through elastase inhibition and collagenase inhibition assay, the PL showed concentration-dependent antioxidant activity similar to epigallocatechin gallate, a control group, at a concentration of 1,000 ㎍/ml. As a result of measuring the synthesis rate of pro-collagen type I and the inhibition rate of MMP-1 in UVB-induced CCD-986sk cells, the control group EGCG showed a 90.2% pro-collagen synthesis rate at 20 ㎍/ml and PL showed an 88.5% synthesis rate at 30 ㎍/ml. In addition, the inhibition rate of MMP-1 of 33.0% and 40.8% were confirmed in EGCG 20 ㎍/ml and PL 30 ㎍/ml, respectively. As a result of measuring the protein expression of pro-collagen type I and MMP-1 in the PL through western blot, it was confirmed that the protein expression of pro-collagen type I increased, and MMP-1 decreased when the PL was treated together compared to the UVB alone group. According to the above experimental results, it is expected to be used as a natural product material for cosmetics by confirming that the PL prevent photoaging caused by UVB stimulation and have antioxidant and anti-wrinkle effects.