• Title/Summary/Keyword: Matrix laboratory

Search Result 745, Processing Time 0.025 seconds

First detection of avian bornavirus by RT-PCR in proventricular dilatation disease-suspected Hahns Macaw (Ara nobilis nobilis) in Korea (선위확장증-의심 한스 마코앵무새(Ara nobilis nobilis )로부터 RT-PCR에 의한 avian bornavirus 최초 검출)

  • Kim, Jin-Hyun;Lee, Bu-Heung;Cho, Jae-Keun;Yoon, Won-Koung;Kim, Won;Kim, Hee-Jung;Kim, Eun-Mi;Kim, Ki-Seuk;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.1
    • /
    • pp.79-84
    • /
    • 2014
  • Two Hahns Macaws (Ara nobilis nobilis), three and nine-month-old, with a three-weeks history of weight loss and anorexia were diagnosed presumptively with proventricular dilatation disease (PDD) by radiographic examination. The birds were treated with antimicrobials, analgesics, and fluid administration. However, these birds died three weeks after the first signs of PDD. At necropsy, the birds had severely dilated proventriculus, severe pectoral muscles atrophy, and blood vessels congestion on cortex of cerebrum. The partial matrix gene of avian bornavirus (ABV) was detected by RT-PCR from tissues of the brain, feather calami, and proventiculus of each PDD-suspected birds. This report describes the first detection of ABV in PDD-suspected Hahns Macaw in Korea.

Effect of Increased Oxygen Content due to Intensive Milling on Phase and Microstructural Development of Silicon Nitride

  • Kim, Hai-Doo;Ellen Y. Sun;Paul F. Becher;Kim, Hyo-Jong;Han, Byung-Dong;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.405-411
    • /
    • 2001
  • Compacts of a mixture of fine $\alpha$-Si$_3$N$_4$powders, 6% $Y_2$O$_3$and 1% $Al_2$O$_3$were attrition milled time on phase and microstructural development in silicon nitride ceramics. The sintered surface and the interior showed different behaviors in phase and microstructral developments. Increased oxygen content with increased milling time of powder mixture leads to the formation of Si$_2$$N_2$O phase at temperatures as low as 155$0^{\circ}C$. Si$_2$$N_2$O is stable in the interior of the samples but unstable in the surface region of the specimen sintered at higher temperature. This results in a duplex structure where the interior consists of Si$_2$$N_2$O grains dispersed in $\beta$-Si$_3$N$_4$matrix and a surface which contains only $\beta$-Si$_3$N$_4$. The alpha to beta phase transformation and the microstructural development are shown to be influenced by the formation and decomposition of the Si$_2$$N_2$O.

  • PDF

POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

  • Ryu, H.J.;Park, J.M.;Jeong, Y.J.;Lee, K.H.;Lee, Y.S.;Kim, C.K.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.847-858
    • /
    • 2013
  • Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4-5 $g-U/cm^3$ were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

Studies on Whole Cell Immobilized Glucose Isomerase - II. Operational Studies on the Batchwise and Continuous Isomerization of D-Glucose - (포도당 이성화 효소의 세포 고정화에 관한 연구 - 제 2 보 : 회분식 및 연속 반응조를 사용한 포도당의 이성화 -)

  • Ahn, Byung-Yoon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-257
    • /
    • 1979
  • Using the whole cell immobilized glucose isomerase which was prepared in the previous work (Korean J. Food Sci. & Technol., 11(3), 192 (1979), the specific activity of the immobilized enzyme was 48.1 units in the batch reaction system and 114 units in the continuous reaction system per g of matrix, respectively. In the continuous reactor the voidity was 0.36, which was suitable for the packed bed reactor. This immobilized enzyme showed a good operational stability of 115 days of half life which was sufficient for the continuous operation. The experimental result showed that 55 % of the substrate was converted to the product in the packed bed reactor. The productivity was dependent on the flow rate, column geometry, enzyme loading, and substrate concentration. An intrapaticle diffusion was observed by the effectiveness factor of 0.75 and interparticle diffusion by the decrease of Km' with increasing the superficial velocity.

  • PDF

The effects of non-thermal plasma and conventional treatments on the bond strength of fiber posts to resin cement

  • do Prado, Maira;da Silva, Eduardo Moreira;Marques, Juliana das Neves;Gonzalez, Caroline Brum;Simao, Renata Antoun
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • Objectives: This study compared the effect of hexamethyldisiloxane (HMDSO) and ammonia ($NH_3$) plasmas on the bond strength of resin cement to fiber posts with conventional treatments. Materials and Methods: Sixty-five fiber posts were divided into 5 groups: Control (no surface treatment); $H_2O_2$ (24% hydrogen peroxide for 1 min); Blasting (blasting with aluminum oxide for 30 sec); $NH_3$ ($NH_3$ plasma treatment for 3 min); HMDSO (HMDSO plasma treatment for 15 min). After the treatments, the Ambar adhesive (FGM Dental Products) was applied to the post surface (n = 10). The fiber post was inserted into a silicon matrix that was filled with the conventional resin cement Allcem Core (FGM). Afterwards, the post/cement specimens were cut into discs and subjected to a push-out bond strength (POBS) test. Additionally, 3 posts in each group were evaluated using scanning electron microscopy. The POBS data were analyzed by one-way analysis of variance and the Tukey's honest significant difference post hoc test (${\alpha}=0.05$). Results: The Blasting and $NH_3$ groups showed the highest POBS values. The HMDSO group showed intermediate POBS values, whereas the Control and $H_2O_2$ groups showed the lowest POBS values. Conclusion: Blasting and $NH_3$ plasma treatments were associated with stronger bonding of the conventional resin cement Allcem to fiber posts, in a procedure in which the Ambar adhesive was used.

Development of an Artificial Neural Network Model for a Predictive Control of Cooling Systems (건물 냉방시스템의 예측제어를 위한 인공신경망 모델 개발)

  • Kang, In-Sung;Yang, Young-Kwon;Lee, Hyo-Eun;Park, Jin-Chul;Moon, Jin-Woo
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted - i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.

A Study of Cold Room Experiments for Strength Properties of Frozen Soil (Cold Room 실험을 통한 동결토의 강도특성 연구)

  • Seo, Young-Kyo;Kang, Hyo-Sub;Kim, Eun-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2008
  • Recently many countries have become interested in the development of cold or arctic regions. The construction of engineered structures in those regions demands an understanding of the deformation characteristics of frozen soil. However, an understanding of frozen soil behavior poses difficult problems owing to the complex interaction between the soil particles and the ice matrix. In this research, a series of laboratory tests was performed to investigate the variations in the unconfined compression strength and split tensile strength of weathered granite soil and mixed soil (standard sand and kaolinite) in 15 degrees below zero environments. In the frozen soil tests, specimens were prepared with various water and clay contents, and then the interrelationships between four factors (water content, clay content, unconfined compression strength, split tensile strength) were analyzed. The test results were summarized as follows; as the water content was increased, the unconfined compressive and split tensile strengths also increased in frozen soil. However as the clay content was increased, the unconfined compressive and split tensile strengths were lowered. In the case of frozen soil that contained little clay content, the strength decreased rapidly in mixed soil (standard sand and kaolinite) when the frozen specimen was broken. On the other hand, in the cases of mixed soil that contained a high clay content and weathered granite soil, the strength decreased relatively slowly.

Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression

  • Chen, Shao J.;Ren, Meng Z.;Wang, Feng;Yin, Da W.;Chen, Deng H.
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.385-396
    • /
    • 2020
  • A uniaxial compression test was performed to analyse the mechanical properties and macroscale and mesoscale failure mechanisms of sandstone with pyrite concretions. The effect of the pyrite concretions on the evolution of macroscale cracks in the sandstone was further investigated through numerical simulations with Particle Flow Code in 2D (PFC2D). The results revealed that pyrite concretions substantially influence the mechanical properties and macroscale and mesoscale failure characteristics of sandstone. During the initial loading stage, significant stress concentrations occurred around the edges of the pyrite concretion accompanied by the preferential generation of cracks. Meanwhile, the events and cumulative energy counts of the acoustic emission (AE) signal increased rapidly because of friction sliding between the concretion and sandstone matrix. As the axial stress increased, the degree of the stress concentration remained relatively unchanged around the edges of the concretions. The cracks continued growing rapidly around the edges of the concretions and gradually expanded toward the centre of the sample. During this stage, the AE events and cumulative energy counts increased quite slowly. As the axial stress approached the peak strength of the sandstone, the cracks that developed around the edges of the concretion started to merge with cracks that propagated at the top-left and bottom-right corners of the sample. This crack evolution ultimately resulted in the shear failure of the sandstone sample around the edges of the pyrite concretions.

Ballistic Properties of Zr-based Amorphous Alloy Surface Composites Fabricated by High-Energy Electron-Beam Irradiation (고에너지 전자빔 투사방법으로 제조된 Zr계 비정질 합금 표면복합재료의 탄도충격 성능)

  • Do, Jeonghyeon;Jeon, Changwoo;Nam, Duk-Hyun;Kim, Choongnyun Paul;Song, Young Buem;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1047-1055
    • /
    • 2010
  • The objective of this study is to investigate the ballistic properties of Zr-based amorphous alloy surface composites fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous powders and $LiF+MgF_2$ flux powders was deposited on a pure Ti substrate, and then an electron beam irradiated this powder mixture to fabricate a one-layer surface composite. A four-layer surface composite, in which the composite layer thickness was larger than 3 mm, was also fabricated by irradiating the deposited powder mixture by an electron beam three times on the one-layer surface composite. The microstructural analysis results indicated that a small amount of fine crystalline particles were homogeneously distributed in the amorphous matrix of the surface composite layer. According to the ballistic impact test results, the surface composite layers effectively blocked a fast traveling projectile, while many cracks were formed at the composite layers, and thus the surface composite plates were not perforated. The surface composite layer containing ductile ${\beta}$ dendritic phases showed a better ballistic performance than the one without dendrites because dendritic phases hindered the propagation of shear bands or cracks.

A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

  • Zhao, Xiaoli;Li, Chuanwei;Han, Lizhan;Gu, Jianfeng
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1193-1201
    • /
    • 2018
  • Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich $M_{23}C_6$, and most of them are V-rich MC, only very few are Cr-rich $M_{23}C_6$. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.