• Title/Summary/Keyword: Matrix inequality

Search Result 534, Processing Time 0.024 seconds

SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS

  • Feki, Kais
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1385-1405
    • /
    • 2021
  • Let A be a positive bounded linear operator acting on a complex Hilbert space (𝓗, ⟨·,·⟩). Let ωA(T) and ║T║A denote the A-numerical radius and the A-operator seminorm of an operator T acting on the semi-Hilbert space (𝓗, ⟨·,·⟩A), respectively, where ⟨x, y⟩A := ⟨Ax, y⟩ for all x, y ∈ 𝓗. In this paper, we show with different techniques from that used by Kittaneh in [24] that $$\frac{1}{4}{\parallel}T^{{\sharp}_A}T+TT^{{\sharp}_A}{\parallel}_A{\leq}{\omega}^2_A(T){\leq}\frac{1}{2}{\parallel}T^{{\sharp}_A}T+TT^{{\sharp}_A}{\parallel}_A.$$ Here T#A denotes a distinguished A-adjoint operator of T. Moreover, a considerable improvement of the above inequalities is proved. This allows us to compute the 𝔸-numerical radius of the operator matrix $\(\array{I&T\\0&-I}\)$ where 𝔸 = diag(A, A). In addition, several A-numerical radius inequalities for semi-Hilbert space operators are also established.

Interstory-interbuilding actuation schemes for seismic protection of adjacent identical buildings

  • Palacios-Quinonero, Francisco;Rubio-Massegu, Josep;Rossell, Josep M.;Rodellar, Jose
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.67-81
    • /
    • 2019
  • Rows of closely adjacent buildings with similar dynamic characteristics are common building arrangements in residential areas. In this paper, we present a vibration control strategy for the seismic protection of this kind of multibuilding systems. The proposed approach uses an advanced Linear Matrix Inequality (LMI) computational procedure to carry out the integrated design of distributed multiactuation schemes that combine interbuilding linking devices with interstory actuators implemented at different levels of the buildings. The controller designs are formulated as static output-feedback H-infinity control problems that include the interstory drifts, interbuilding approachings and control efforts as controlled-output variables. The advantages of the LMI computational procedure are also exploited to design a fully-decentralized velocity-feedback controller, which can define a passive control system with high-performance characteristics. The main ideas are presented by means of a system of three adjacent five-story identical buildings, and a proper set of numerical simulations are conducted to demonstrate the behavior of the different control configurations. The obtained results indicate that interstory-interbuilding multiactuation schemes can be used to design effective vibration control systems for adjacent buildings with similar dynamic characteristics. Specifically, this kind of control systems is able to mitigate the vibrational response of the individual buildings while maintaining reduced levels of pounding risk.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

Guaranteed Cost Controller Design Method for Singular Systems with Time Delays using LMI (선형행렬부등식을 이용한 시간지연 특이시스템의 보장비용 제어기 설계방법)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.99-108
    • /
    • 2003
  • This paper is concerned with the problem of designing a guaranteed cost state feedback controller for singular systems with time-varying delays. The sufficient condition for the existence of guaranteed cost controller, the controller design method, and the optimization problem to get the upper bound of guaranteed cost function are proposed by LMI(linear matrix inequality), singular value decomposition, Schur complements, and change of variables. Since the obtained sufficient conditions can be changed to LMI form, all solutions including controller gain and the upper bound of guaranteed cost function can be obtained simultaneously. Moreover, the proposed controller design method can be extended to the problem of robust guaranteed cost controller design method for singular systems with parameter uncertainties and time-varying delays. The validity of the proposed design algorithm is investigated through a numerical example.

Robust Position Control of a Reaction Wheel Inverted Pendulum (원판의 반작용을 이용한 역진자의 강인 자세 제어)

  • Park, Sang-Hyung;Lee, Hae-Chang;Lim, Seong-Muk;Kim, Jung-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2016
  • This paper presents a robust control of a reaction wheel inverted pendulum. To this end, a mathematical model is derived using physical laws, and then parameters in the model are identified as well. Based on the model, a robust position control is designed, which consists of two parts: swing-up control using passivity and robust stabilization control using LMI (Linear Matrix Inequality). When the pendulum starts to move, the swing-up control is applied. If the position of the pendulum is near the desired upright position, the control is switched to the robust stabilization control. This robust control is employed in order to deal with the uncertainties in the inertia of the pendulum dynamics. The performance of the proposed control scheme is validated not only simulation but also real experiment.

Intelligent Fuzzy Modeling and Robust Digital fuzzy Control for Level Control in the Steam Generator of a Nuclear Power Plant (원전 증기발생기의 수위제어를 위한 지능형 퍼지 모델링 및 강인한 디지털 퍼지 제어기 설계)

  • Joo, Young-Hoon;Cho, Kwang-Lae;Kim, Joo-Won;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2002
  • Difficulties of the level control in the steam generator are increased due to their nonlinear characteristics. Futhermore, parameter uncertainties of the steam generator is related with control performance and stability. The efficiency of digital conversion in control systems is proved in many recent researches. In order to solve this problem, this paper suggests robust digital fuzzy controller design methodologies of the steam generator which have unstable parameters. Takagi-Sugeno (TS) fuzzy model is used to construct a fuzzy model which has uncertainties in the steam generator. In designing procedure, intelligent digital redesign method is used to control the nonlinear system. This digital controller keeps the performance of the analog controller. Simulation examples are included for ensuring the proposed control method.

Robust $H_\infty$ Output Feedback Control of Descriptor Systems with Parameter Uncertainty and Time dDelay (파라미터 불확실성과 시간지연을 가지는 특이시스템의 견실 $H_\infty$ 출력궤환 제어)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.9-16
    • /
    • 2004
  • This paper provides an observer-based Η$\infty$ output feedback controller design method for descriptor systems with time-varying delay by just one LMI(linear matrix inequality) condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI approach which can be solved efficiently by convex optimization. The design procedure involves solving an LMI. Since the obtained condition can be expressed as an LMI form all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement changes of variables, and singular value decomposition. Moreover, The proposed controller design algorithm can be extended to the observer-based robust Η$\infty$ output feedback controller design method for descriptor systems with parameter uncertainty and time delay. An example is given to illustrate the results.

Probabilistic Constrained Approach for Distributed Robust Beamforming Design in Cognitive Two-way Relay Networks

  • Chen, Xueyan;Guo, Li;Dong, Chao;Lin, Jiaru;Li, Xingwang;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2018
  • In this paper, we propose the distributed robust beamforming design scheme in cognitive two-way amplify-and-forward (AF) relay networks with imperfect channel state information (CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this paper is to design the robust beamformer which minimizes the total transmit power of the collaborative relays. This design will guarantee the outage probability of signal-to-interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and satisfies the outage probability of interference generated on the primary user (PU) above the predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties in the two-way transmission, the probabilistic constrained optimization problem is intractable and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to the standard form through a series of matrix transformations. We then accomplish the problem by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the worst-case approach based on S-Procedure. The simulation results indicate that the robust beamforming designs based on the probabilistic method and the worst-case method are both robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility rate and consumes less power.