• 제목/요약/키워드: Matrix composites

검색결과 1,814건 처리시간 0.025초

가압연속주조법에 의한 SiCp/Al 합금기 복합재료의 조직 및 특성 (Microstructure and Characteristics of SiCp/Al-4.5wt%Cu-1wt%Mg Composites by Pressurized Continuous Compo-Casting)

  • 이학주;홍준표
    • 한국주조공학회지
    • /
    • 제11권1호
    • /
    • pp.71-78
    • /
    • 1991
  • Microstructure and characteristics of the SiCp/Al-4.5wt%Cu-1wt%Mg composites fabricated by the combination of the compocasting and the pressurized continuous casting process, which is one of the processes to decrease the limitations of the size, and shops of the products, are investigated. The main results are as follows: 1) the SiCp/Al alloy matrix composites can be made continuously 2) as the amount of SiCp addition increases; (1) the degree of directional solidification of matrix structure decreases, and that of SiCp dispersion improves, (2) wear resistance improves, and especially these composites show the excellent wear resistance under the high sliding speed and high final load condition, (3) wear mechanism of these composites is changed from adhesive wear into abrasive wear, and the tendency of that becomes outstanding with increasing sliding speed.

  • PDF

The Effect of Pressure on the Properties of Carbon/Carbon Composites during the Carbonization Process

  • Joo, Hyeok-Jong;Oh, In-Hwan
    • Carbon letters
    • /
    • 제3권2호
    • /
    • pp.85-92
    • /
    • 2002
  • 4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 $g/cm^3$ after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.

  • PDF

Effect of fiber content on flexural properties of fishnet/GFRP hybrid composites

  • Raj, F. Michael;Nagarajan, V.A.;Elsi, S. Sahaya;Jayaram, R.S.
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.13-24
    • /
    • 2016
  • In the present paper, glass fibers are substituted partially with monofilament fishnet and polyester matrix for making the composites. The composite specimens were prepared in accordance with ASTM for analyzing the flexural strength and dynamic mechanical properties. Furthermore, machinability revealed the interaction of glass fiber and partial substituted monofilament fishnet fiber with the matrix. Fiber pullouts on the fractured specimen during the physical testing of the composites are also investigated by COSLAB microscope. The results reveal that the fishnet based composites have appreciably higher flexural properties. Furthermore, the glass fiber, woven roving and fishnet composite has more storage modulus and significant mechanical damping. The composite specimens were fabricated by hand lay-up method. Hence, these composites are the possible applications to develop the value added products. The results of this study are presented.

Electromagnetic Interference Shielding Effectiveness of Electroless Nickel-plated MWCNTs/CFs-reinforced HDPE Matrix Composites

  • Choi, Woong-Ki;Hong, Myung-Sun;Lee, Hae-Seong;An, Kay-Hyeok;Bang, Joon-Hyuk;Lee, Young Sil;Kim, Byung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.597-600
    • /
    • 2014
  • In this work, the electromagnetic interference shielding effectiveness (EMI-SE) of carbon nanotube/carbon fiber-reinforced HDPE matrix composites are investigated with various preparation conditions, such as the carbon fiber and carbon nanotube content, the presence of metal additives, as well as mixing speed and time. It was found that the EMI-SE of the composites increased with filler contents and metal additives. These results indicate that the content and length of carbonaceous fillers determine the electric networks in the composites, resulting in the control of the EMI-SE of the composites.

PP/CF/ MWCNT 나노복합체의 제조 및 특성평가 (Preparation and characteristics of PP/CF/MWCNT nanocomposites)

  • 김승범;남병욱;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.107-111
    • /
    • 2011
  • Polypropylene(PP)/carbon fiber(CF)/multi-walled carbon nanotube(MWCNT) nanocomposites along with various CF and MWCNT contents were prepared in a Twin screw extruder. Electrical, mechanical property and morphology were investigated with a variation of CF and MWCNT contents. From the surface resistance of PP/CF/MWCNT composites, MWCNT can increase the conductivity of composites compared with PP/CF composites without MWCNT. It is suggested that MWCNT and CF can make the conductive network in the polymer matrix. Flexural modulus and Izod impact strength of the PP/CF/MWCNT composites were improved with the increase of CF contents. Morphology showed that length of CF in polymer matrix was shortened by torque during melt mixing with MWCNT. As a result of this phenomenon, the impact strength of composites was somewhat decreased.

Flexural Behaviors of 4D Carbon/carbon Composites with the Preform Architectures

  • Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.28-34
    • /
    • 2008
  • Multidirectional reinforcement is aimed primarily at overcoming interlaminar weakness, hence a major interest lies in the mechanical properties of multidirectional carbon/carbon composites. Mechanical properties depend on the type of carbon fiber, the size of the fiber bundle, the spacing of the bundles, the angles of the bundles relative to the axes of the block, and matrix formation. In the present studies, PAN based carbon fiber preforms manufactured different size of unit cell have been prepared. Densification of these used high pressure infiltration and carbonization technique with coal tar pitch as matrix precursor was carried out. Scanning electron microscopy has been used to study the fracture behavior of composites. The size of unit cell of the preforms has considerably affected on the flexural properties as well as microstructure of the carbon/carbon composites.

Rheo-compocasting 및 Hot Pressing에 의하여 제조한 $Al-Si-Mg/Al_2O_3$ 단섬유강화 복합재료의 조직 및 인장특성 (Microstructures and Tensile Properties of $A_2O_3$ Short Fiber/Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Pressing)

  • 곽현만;이학주
    • 한국주조공학회지
    • /
    • 제13권6호
    • /
    • pp.547-554
    • /
    • 1993
  • Aluminum alloy matrix composites reinforced with various amounts of $Al_2O_3$ short fibers have been produced by rheo-compocasting accompanied by hot pressing. When composites reinforced with fibers are produced by rheo-compocasting, S-L process is the most effective method for homogeneous dispersion of fibers. A sound composites with the improved orientation(3 dimension${\rightarrow}$2 dimension) of the fibers and increased volume fraction of them have been fabricated through the hot pressing of the casted composites. Fibers are broken down when rheo-compocasting, hot pressing, and $T_6$ treating. Among them fibers are broken down most heavily in the hot pressing. And even in the case of the composite reinforced with 30 vol% fibers, which showed the hardest fiber break down, aspect ratio(11.6) is higher than critical aspect ratio(10.7). The fiber strengthening effect in the composites has showed upto 573K. As the test temperature increases to the range of 573K, the effect has been higher. The fracture of composites is controlled by fiber from room temperature to 473K, but the fracture of composites is controlled by interface between fiber and matrix alloy above 473K.

  • PDF

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

온도변화에 따른 나노 복합재료의 충격거동 (Impact behavior on temperature effect of nano composite materials)

  • 김형진;이정규;고성위
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.561-566
    • /
    • 2015
  • In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19-25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from $-40^{\circ}C$ to $0^{\circ}C$. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.

충격하중을 받는 금속복합재료의 동적변형거동에 관한 연구 (Dynamic Deformation Behavior of Metal Matrix Composites Under Impact Loading)

  • 김문생;이현철
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1772-1782
    • /
    • 1993
  • The characteristics of metal matrix composite under dynamic tension at high strain rates up to the order of $10^3/sec$ is studied by using newly developed apparatus. The composite material processed in this research is aluminum-alumina metal matrix composites, arid fabricated by compocasting with the fiber volume fraction from 5 to 20%. The whisker and matrix material used in this paper were ${\delta}-Al_2O_3$ and Al-6061, respectively. The mechanical tests performed in this research are low and high strain rate tensile test. At low strain-rate tensile test, the modulus of elasticity and the ultimate tensile strength of the composites were improved about 77 pct. and 55 pct., respectively comparing with the unreinforced materials. At strain-rate from $10^{-3}\;to\;10^3/s$, the effect of strain-rate on the modulus, ultimate strength, flow stress is determined. Also the effect of strain rate on the modulus, ultimate tensile strength, flow stress and elongation to failures were investigated.