• Title/Summary/Keyword: Mathiue Equation

Search Result 2, Processing Time 0.019 seconds

Current Collection of Catenary System with Time-Varying Stiffness (시변강성 가선계의 집전성능)

  • 최연선
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.131-138
    • /
    • 2000
  • The design of current collection system of high speed train requires the fundamental understandings for the dynamic characteristics of catenary system and pantograph. The stiffness of catenary system of high speed train has the varying characteristics for the change of contact point with pantograph, since the supporting pole and hanger make the different boundary conditions for the up-down stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two-term variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two-term variation of the stiffness is done for the several design parameters of pantograph.

  • PDF

Time-varying Stiffness of Catenary System and its Effect on Current Collection by Pantograph (가선계의 강성변화와 판토그래프의 집전성능)

  • 최연선
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.598-605
    • /
    • 2000
  • The design of a current collection system of high speed train requires the fundamental understandings fer the dynamic characteristics of a catenary system and pantograph. The stiffness of the catenary system of high speed train has the varying characteristics for the change of the contact point with a pantograph, since the supporting pole and hanger make the different boundary conditions for the updown stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two terms variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated, and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two term variation of the stiffness is done for the several design parameters of the pantograph.

  • PDF