• Title/Summary/Keyword: Mathews stability graph

Search Result 4, Processing Time 0.017 seconds

Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method (Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.369-377
    • /
    • 2005
  • The stability of underground openings is a major concern for the safety and productivity of mining operations. Rock mass classification methods provide the basis of many empirical design methods as well as a basis for numerical analysis. Of the many factors which influence the stability of openings, the span of the opening for a given rock mass condition provides an important parameter of design. In this paper, the critical span curves proposed by Lang, the Mathews stability graph method and the modified critical span curve suggested by the authors have been assessed. The modified critical span curve was proposed by using Mathews stability graph method. The modified critical span curve by the author have been used to assess the stability of underground openings in several limestone mines.

Stability Assessment of Abandoned Gangway for Commercial Utilization of Services (서비스업 활용을 위한 광산 폐갱도의 안정성 평가)

  • SunWoo, Choon;Chung, So-Keul;Lee, Yun-Su;Kang, Sang-Soo;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.297-309
    • /
    • 2012
  • The stability assessment of abandoned gangway for the purpose of services was performed. Among the many factors that affect the stability of openings, the span of the opening in a given rock mass condition provides an important element of design. In this paper, the stability of gangway was assessed by the critical span curves proposed by Lang, the modified Mathews'stability graph method and using support measures of the Q system. In the evaluation of stability as a whole the gangway is considered as stable. But the rockfalls of wedge-shaped blocks were expected in the area in which the horizontal joints of low angle appear. The support measures such as local rock bolts are required to use for commercial purposes of the abandoned gangway. And entrance section may require the particular attention as unstable section. Since there are so many spalling due to bad blasting in the roof and sidewall of gangway, the scaling operations should be followed primarily.

Evaluating the Stability of Large-scale Gangways Mined in a Limestone Mine Using Rock Classification Schemes (암반분류법을 이용한 석회석 광산 내 대규격 갱도의 안정성 평가)

  • Yoon, Yong-Kyun;Lee, Hong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.503-510
    • /
    • 2007
  • Rock classification schemes such as RMR, Q-system were applied to investigate the stability of large-scale gangways mined in a limestone mine. 22 areas for engineering geological surveys were selected and rock classifications at each survey point had been carried out. Considering the fact that the observed gangways have not experienced some severe failure and have been stably maintained till now, it is found that Q-system is more reasonable than RMR in evaluating the stability of unsupported span. Also, extended Mathews stability graph method which is a kind of revised Q-system was used to assess the stability of gangways and the results represent that all gangways except for one area are under stable condition. Based on above the mentioned results, the empirical equations to design the maximum unsupported span and critical height of a large-scale gangway are suggested.

Proposal of the Unsupported Span of Openings in the Domestic Underground Limestone Mines (국내 지하 석회석광산 갱도의 무지보 폭을 위한 제안)

  • SUNWOO, Choon
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.358-371
    • /
    • 2018
  • The stability of openings in the underground mine is major concern in the operation of mines that must ensure productivity and safety. Among many rock conditions affecting cavities stability, the width and height of the opening is an important design factor. In this paper, we consider to determine the maximum unsupported span of a opening in a limestone mine by using the Q system among several rock classification schemes. In order to determine the span of the unsupported opening in the limestone mine, rock mass classifications were carried out at over 200 sites in the underground limestone mines. The relationships by using the Q system and the stability graph proposed by Mathews to determine the maximum span of the unsupported opening were derived and compared. We propose a new classification method that combines GSI and RMR rock classification systems to make it easy to use in a field.