• Title/Summary/Keyword: Mathematical problem

Search Result 3,803, Processing Time 0.042 seconds

Medical Data Base Controlled By Medical Knowledge Base

  • Chernyakhovskaya, Mery Y.;Gribova, Valeriya V.;Kleshchev, Alexander S.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.343-351
    • /
    • 2001
  • World practice is evidence of that computer systems of an intellectual support of medical activities bound up with examination of patients, their diagnosis, therapy and so on are the most effective means for attainment of a high level of physician\`s qualification. Such systems must contain large knowledge bases consistent with the modern level of science and practice. To from large knowledge bases for such systems it is necessary to have a medical ontology model reflecting contemporary notions of medicine. This paper presents a description of an observation ontology, knowledge base for the physician of general tipe, architecture, functions and implementation of problem independent shell of the system for intellectual supporting patient examination and mathematical model of the dialog. The system can be used by the following specialist: therapeutist, surgeon, gynecologist, urologist, otolaryngologist, ophthalmologist, endocrinologist, neuropathologist and immunologist. The system supports a high level of examination of patients, delivers doctors from routine work upon filling in case records and also automatically forms a computer archives of case records. The archives can be used for any statistical data processing, for producing accounts and also for debugging of knowledge bases of expert systems. Besides that, the system can be used for rise of medical education level of students, doctors in internship, staff physicians and postgraduate students.

  • PDF

PRACTICAL APPROACHES TO RISK MANAGEMENT FOR GLOBAL CONTRACTORS

  • Seung Heon Han;Du Yon Kim;Han Him Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1231-1236
    • /
    • 2005
  • Global construction projects manifest more risks than do other industries. Often, firms doing business in construction markets find these risks intimidating. To secure corresponding profits, many global contractors attempt to forecast the effects of risks and establish risk management strategies. However, one key problem with present-day risk management methods is that they are basically analytical or mathematical-oriented approaches which are not easy to adopt in real business. Based on preliminary investigations and evaluations of current tools, this research elicits more practical algorithms for risk checklist by constructing risk scenarios over the whole period of project execution. For the application of the algorithms, a "SE/RF" (Source-Event/Regular-Floating) checklist is suggested, which sorts out risk sources and their subsequent events, as well as dividing various risk factors into either regular or floating categories. In addition, the "PIS" (Probability-Impact-Significance) method is introduced, in place of traditional "PI" (Probability-Impact) methods, by adding the additional criterion of "risk significance" to determine the degree of risk exposure in a more realistic way. As a result, we draw the significant finding that the "PIS" method presents a closer evaluation regarding degree of risk exposure as compared to the level of expert judgments than those from traditional methods. Finally, we provide an integrated procedure for international project risk management with all of the research achievements being incorporated.

  • PDF

MOO: A Study on Data Augmentation Method for Korean Math Word Problem Solving (MOO(Mathematical Operation Organizer): 한국어 서술형 수학 문제 자동 풀이를 위한 데이터 증강 기법 연구)

  • An, Jisu;Ki, Kyung Seo;Kim, Jiwon;Gweon, Gahgene
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.568-571
    • /
    • 2022
  • 본 논문에서는 서술형 수학 문제의 자동 풀이 기술 개발을 위한 데이터 증강 기법인 MOO 를 제안한다. 서술형 수학 문제는 일상에서의 상황을 수학적으로 기술한 자연어 문제로, 인공지능 모델로 이 문제를 풀이하는 기술은 활용 가능성이 높아 국내외에서 다양하게 연구되고 있으나 데이터의 부족으로 인해 성능 향상에서의 한계가 늘 존재해 왔다. 본 논문은 이를 해결하기 위해 시중의 수학 문제들을 수집하여 템플릿을 구축하고, 템플릿에 적합한 풀이계획을 생성할 수 있는 중간 언어인 MOOLang 을 통해 생성된 문제에 대응하는 Python 코드 형태의 풀이와 정답을 생성할 수 있는 데이터 증강 방법을 고안하였다. 이 기법을 통해 생성된 데이터로 기존의 최고 성능 모델인 KoEPT를 통해 학습을 시도해본 결과, 생성된 데이터셋을 통해 모델이 원활하게 데이터셋의 분포를 학습할 수 있다는 것을 확인하였다.

APPLICATION OF BENFOR'S EQUATIONS TO THE PROBLEM OF "SEEING THROUGH LAYERS"

  • Krivoshiev, Georgi -P.;Chalucova, Raina-P.;Dahm, Donald-J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1132-1132
    • /
    • 2001
  • This work is a further development of the method created by G. Krivoshiev in 1996 for elimination of peel interference and prediction of fruit flesh optical density. In this investigation, as it was earlier, the objects are observed as being structured by three successive layer “AlongrightarrowOlongrightarrowB” denoting “peel-flesh-peel”. In the first version of the method the transmittances of the surface layers A and B were measured according to Kubelka-Munk theory by means of their diffuse reflectance. At that the overall transmittance T was approximated in the form of a multiplication approximation being valid for plane-parallel layers of a non-scattering material. In this work this approximation was done away with applying the theory of discontinuum, respectively Benfor's equations. As a result two mathematical models were created for non-destructive prediction of fruit flesh optical density. These models are different from the ones based solely on Kubelka-Munk theory, the destruction being marked by the terms 1n (1 - $R_{A}R_{0}$) and 1n (1 - $R_{A}R_{B}$), where: $R_{A}$ and $R_{B}$ are reflectance values for the surface layers A and B; $R_{0}$ is the average reflectance of the internal layer that could be obtained empirically by means of a preliminary measurement of sufficiently large number of physically peeled fruits of a given species and variety.

  • PDF

Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.381-391
    • /
    • 2023
  • The aim of this work is to analyze and predict the wave propagation behavior of the carbon nanotube reinforced composites (CNTRC) beams within the framework of various higher order shear deformation beam theory. Using the Euler-Lagrange principle, the wave equations for CNTRC beams are derived, where the determining factor is to make the determinant equal to zero. Based on the eigenvalue method, the relationship between wave number and circular frequency is obtained. Furthermore, the phase and group velocities during wave propagation are obtained as a function of wave number, and the material properties of CNTRC beams are estimated by the mixture rule. In this paper, various higher order shear beam theory including Euler beam theory, Timoshenko beam theory and other beam theories are mainly adopted to analyze the wave propagation problem of the CNTRC beams, and by this way, we conduct a comparative analysis to verify the correctness of this paper. The mathematical model provided in this paper is verified numerically by comparing it with some existing results. We further investigate the effects of different enhancement modes of CNTs, volume fraction of CNTs, spring factor and other aspects on the wave propagation behaviors of the CNTRC beams.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

Soccer league optimization-based championship algorithm (SLOCA): A fast novel meta-heuristic technique for optimization problems

  • Ghasemi, Mohammad R.;Ghasri, Mehdi;Salarnia, Abdolhamid
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.297-319
    • /
    • 2022
  • Due to their natural and social revelation, also their ease and flexibility, human collective behavior and teamwork sports are inspired to introduce optimization algorithms to solve various engineering and scientific problems. Nowadays, meta-heuristic algorithms are becoming some striking methods for solving complex real-world problems. In that respect in the present study, the authors propose a novel meta-innovative algorithm based on soccer teamwork sport, suitable for optimization problems. The method may be referred to as the Soccer League Optimization-based Championship Algorithm, inspired by the Soccer league. This method consists of two main steps, including: 1. Qualifying competitions and 2. Main competitions. To evaluate the robustness of the proposed method, six different benchmark mathematical functions, and two engineering design problem was performed for optimization to assess its efficiency in achieving optimal solutions to various problems. The results show that the proposed algorithm may well explore better performance than some well-known algorithms in various aspects such as consistency through runs and a fast and steep convergence in all problems towards the global optimal fitness value.

The level set-based topology optimization for three-dimensional functionally graded plate using thin-plate spline

  • Banh, Thanh T.;Luu, Nam G.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.633-649
    • /
    • 2022
  • This paper is first implemented with the bending behavior of three-dimensional functionally graded (3DFG) plates in the framework of level set-based topology optimization (LS-based TO). Besides, due to the suitable properties of the current design domain, the thin-plate spline (TPS) is recognized as a RBF to construct the LS function. The overall mechanical properties of the 3DFG plate are assessed using a power-law distribution scheme via Mori-Tanaka micromechanical material model. The bending response is obtained using the first-order shear deformation theory (FSDT). The mixed interpolation of four elements of tensorial components (MITC4) is also implemented to overcome a well-known shear locking problem when the thickness becomes thinner. The Hamilton-Jacobi method is utilized in each iteration to enforce the necessary boundary conditions. The mathematical formulas are expressed in great detail for the LS-based TO using 3DFG materials. Several numerical examples are exhibited to verify the efficiency and reliability of the current methodology with the previously reported literature. Finally, the influences of FG materials in the optimized design are explained in detail to illustrate the behaviors of optimized structures.

A Mixed Integer Nonlinear Programming Approach towards Optimal Earthmoving Equipment Selection (혼합 정수 비선형 계획법 기반 토공사 최적 장비 선정 방법 제시)

  • Ko, Yong-Ho;Ngov, Kheang;Lee, Su-Min;Shin, Do-Hyoung;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.223-224
    • /
    • 2023
  • Optimal fleet management in the planning stage is one of the most critical activities that guarantee successful construction projects. In South Korea, the construction standard production rate database (CSPRD) is normally employed. However, when it comes to a trade-off problem that involves decision-making on optimal sets of equipment to perform a certain task, the method will require the planners' in-depth knowledge and experience regarding the target process and a time consuming estimation of the performance of every possible scenario must be conducted for the deduction of the optimal fleet management. On this account, this research paper proposes a lightweight method of using mixed integer nonlinear programming (MINLP) in multi-objective problems based on CSPRD-based mathematical equations to assist planners in the preplanning stage of choosing the optimal sets of types and size machinery to efficiently arrange the construction scheduling and budgeting.

  • PDF

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.