• Title/Summary/Keyword: Mathematical dynamic modeling

Search Result 242, Processing Time 0.034 seconds

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

MATHEMATICAL ANALYSIS USING TWO MODELING TECHNIQUES FOR DYNAMIC RESPONSES OF A STRUCTURE SUBJECTED TO A GROUND ACCELERATION TIME HISTORY

  • Kim, Yong-Woo;Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.361-374
    • /
    • 2011
  • Two types of numerical modeling techniques were considered for the dynamic response of a structure subjected to a ground acceleration. One technique is based on the equation of motion relative to ground motion, and the other is based on the equation of absolute motion of the structure and the ground. The analytic background of the former is well established while the latter has not yet been extensively verified. The latter is called a large mass method, which allocates an appropriate large mass to the ground so that it causes the ground to move according to a given acceleration time history. In this paper, through the use of a single degree-of-freedom spring-mass system, the equations of motion of the two techniques were analyzed and useful theorems are provided on the large mass method. Using simple examples, the numerical results of the two modeling techniques were compared with analytic solutions. It is shown that the theorems provide a clear insight on the large mass method.

Modeling of Liquid Rocket Engine Components Dynamics at Transient Operation (액체로켓엔진 천이작동 예측을 위한 구성품 동특성 모델링)

  • Kim, Hyung-Min;Lee, Kuk-Jin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • Mathematical modelling for liquid rocket engine(LRE) main components were conducted to predict the dynamic characteristics when the LRE operates at the transient condition, which include engine start up, shut down, or thrust control. Propellant feeding system is composed of fuel and oxidizer feeding components except for regenerative cooling channel for the fuel circuit. Components modeling of pump, pipe, orifice, control valve, regenerative cooling channel and injector was serially made. Hydraulic tests of scale down component were made in order to validate modelling components. The mathematical models of engine components were integrated into LRE transient simulation program in concomitant with experimental validation.

Dynamic Modeling of PIG Flow in Natural Gas Pipelines (천연가스배관내 피그흐름의 동적모델링)

  • Kim, Sang-Bong;Nguyen, Tan Tien;Yoo, Hui-Ryong;Rho, Yong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.241-246
    • /
    • 2001
  • This paper introduces modeling and solution for the dynamics of pipeline inspection gauge (PIG) flow in natural gas pipeline. Without of bypass flow, the dynamic behavior of the PIG depends on the different pressure between the rear and nose parts, which is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. With bypass flow, the PIG dynamics also depends on the amount of bypass flow across its body. The mathematical model are derived for unsteady compressible flow of the PIG driving and expelled gas, and for dynamics of the PIG. The bypass flow is assumed to be incompressible with the condition of its Mach number smaller than 0.45. The method of characteristic (MOC) and the Runge-Kutta method are used to solve the system governing equations. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show that the derived mathematical model and the proposed solution are effective for estimation the dynamics of the PIG with and without bypass flow under given operational condition.

  • PDF

A modeling of dynamic cutting force and analysis of stability in chatter vibration (채터진동에서의 동적 절삭력의 모델링과 안정성 해석)

  • Kim, Jeong-Suk;Kang, Myeong-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1993
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is presented in order to predict the dynamic cutting force from the static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The stability analysis is carried out by a two degree of freedom system. The chatter experiments are conducted by exciting the cutting tool with an impact hammer during an orthogonal cutting. A good agreement is shown between the stability limits predicted by theory and the critical width of cut determined by experiments.

  • PDF

Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine

  • Lee, Soojin
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives: Systems biology is a novel subject in the field of life science that aims at a systems' level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network analysis and inference, and modeling and systems prediction. Results: The existing databases are mostly associated with medicinal herbs and their activities, but new databases reflecting clinical situations and platforms to extract, visualize and analyze data easily need to be constructed. Network pharmacology is a key element of systems biology, so addressing the multi-component, multi-target aspect of pharmacology is important. Studies of network pharmacology highlight the drug target network and network target. Mathematical modeling and simulation are just in their infancy, but mathematical modeling of dynamic biological processes is a central aspect of systems biology. Computational simulations allow structured systems and their functional properties to be understood and the effects of herbal medicines in clinical situations to be predicted. Conclusion: Systems biology based on a holistic approach is a pivotal research methodology for understanding the mechanisms of traditional medicine. If systems biology is to be incorporated into traditional medicine, computational technologies and holistic insights need to be integrated.

Creation of the Conversion Table from Hangeul to the Roman Alphabet

  • Kim, Kyoung-Jing;Rhee, Sang-Burm
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.321-324
    • /
    • 2002
  • For a rule-based conversion of Hangout into the Roman alphabet rather than a word-for-word conversion, one must come up with a faultless model for the Korean standard pronunciation rules, which are the basis of the Romanization. It is on this foundation that the Korean-Roman alphabet conversion table can be created. For linguistic modeling using PetriNet, modeling boundary and notation of modeling can be defined. In order to describe PetriNet, which is a dynamic modeling tool, as a static one, one can model the standard Korean pronunciation rules and the Hangout-Roman alphabet notation by conversion into incident matrix Thus, this research attempts to develop a mathematical modeling tool for a natural language using PetriNet, and create a Korean-Roman alphabet conversion table.

  • PDF

A Study on the Dynamic Analysis on the Cross Directional Register in Roll-to-roll e-Printing Systems (롤투롤 인쇄전자에서의 횡방향 레지스터 동적 특성 모델링)

  • Kang, Hyun-Kyoo;Ahn, Jin-Hyun;Lee, Chang-Woo;Shin, Kee-Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2010
  • For the adaption of roll-to-roll printing method to the printed electronics, it is mandatory to increase the resolution of register errors. Therefore it is desired to derive the mathematical modeling of register error or to develop controller design. The cross direction register error was derived considering both lateral motion of moving web and transverse position of printing roll. The mathematical modeling was validated and the relationship between the lateral motion and register error was analyzed by numerical simulations in various operating conditions using multi-layer direct gravure printing machine. The results could be used for a design of the CD register in the multi-layer printing and the lateral motion caused by translation.

Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road (실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구)

  • Lee, Jeong-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.