• Title/Summary/Keyword: Mathematical design

Search Result 2,133, Processing Time 0.027 seconds

Introduction to Archimedean Horizontal Stars on Geometric Tube Design (기하학적 튜브디자인과 아르키메데스 수평별 입문)

  • Hwang, Hongtaek
    • Communications of Mathematical Education
    • /
    • v.29 no.2
    • /
    • pp.241-254
    • /
    • 2015
  • We have announced a series of Archimedean stars on the mathematical art galleries of Bridges conference since 2012. We are developing a systematic approach and methodology about the composition process of Archimedean stars on geometric tube design. We will introduce the various information about the Archimedean horizontal stars under certain introductory level as well as the underlying information of Archimedean stars to provide them as useful sources for certain creative experimental mathematics education.

A Mathematical Model for Balanced Team Formation in Capstone Design Class (설계 수업에서 균형적인 팀 편성을 위한 수리적 모형)

  • Kim, Jong-hwan
    • Journal of Engineering Education Research
    • /
    • v.21 no.4
    • /
    • pp.28-34
    • /
    • 2018
  • Design class through team activities is increasing in engineering education. Team-based education has been known to improve students' creativity, problem solving ability, cooperative ability, self-directed learning ability, and communication ability. How to organize a team is an important issue that affects the performance of team activities as well as student satisfaction. However, previous studies have focused on the causal relationship between team formation and the team's performance. This paper deals with how to organize a balanced team in a real class. When the basic characteristic values of students are givens, the aim is to make the sum of the characteristic values as fair as possible for each team. We propose a mathematical team formation model and show how to apply it through case studies.

An Effect of Problem-solving Lessons with Problem-posing on Mathematical Creativity (문제 만들기를 적용한 문제해결수업이 수학적 창의성에 미치는 영향)

  • Kim, Seo Lin;Kim, Dong Hwa;Seo, Hae Ae
    • East Asian mathematical journal
    • /
    • v.33 no.4
    • /
    • pp.381-411
    • /
    • 2017
  • The purpose of this study is to investigate how students' mathematical creativity changes through problem-solving instruction using problem-posing for elementary school students and to explore instructional methods to improve students' mathematical creativity in school curriculum. In this study, nonequivalent control group design was adopted, and the followings are main results. First, problem-solving lessons with problem-posing had a significant effect on students' mathematical creativity, and all three factors of mathematical creativity(fluency, flexibility, originality) were also significant. Second, the lessons showed meaningful results for all upper, middle, and lower groups of pupils according to the level of mathematical creativity. When analyzing the effects of sub-factors of mathematical creativity, there was no significant effect on fluency in the upper and middle groups. Based on the results, we suggest followings: First, there is a need for a systematic guidance plan that combines problem-solving and problem-posing, Second, a long-term lesson plan to help students cultivate novel mathematical problem-solving ability through insights. Third, research on teaching and learning methods that can improve mathematical creativity even for students with relatively high mathematical creativity is necessary. Lastly, various student-centered activities in math classes are important to enhance creativity.

Development of Mathematical Story Based on Tessellation (테셀레이션 소재의 수학이야기 자료 개발)

  • Shin, Hyunyong
    • Communications of Mathematical Education
    • /
    • v.28 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • Recently, some storytelling materials based on music or CAS tools have been introduced. Activities or concepts in art can be utilized as such material. In this article, we propose a mathematical storytelling material based on design scheme.

An Interdisciplinary Revolving Door Enrichment Model: Chances and Challenges of Involving pre-service Mathematics Teachers

  • Halverscheid, Stefan
    • Research in Mathematical Education
    • /
    • v.8 no.3
    • /
    • pp.175-182
    • /
    • 2004
  • The design of learning environments which encourage students to work in a creative manner on mathematical problems is a creative process in itself. The concept of the Saturday University program is described in which pre-service teachers are guided at teaching students in extra-curriculum activities on interdisciplinary topics. In the process of the didactical reconstruction of mathematical problems, the pre-service teachers go through the stages of a revolving door model y.

  • PDF

The Effects of Mathematics-Centered STEAM Program on Mathematical Modeling Ability of First Grade Students in Middle School (수학교과 중심의 STEAM 수업 경험이 중학교 1학년 학생들의 수학적 모델링 능력에 미치는 영향)

  • Kim, Mikyung;Han, Hyesook
    • Communications of Mathematical Education
    • /
    • v.35 no.3
    • /
    • pp.295-322
    • /
    • 2021
  • This study was conducted for one semester through one group pretest-posttest design with 49 first-year middle school students to explore the effects of mathematics-centered STEAM class experiences on students' mathematical modeling abilities. The main results of this study are as follows: First, the results of the pre and post-mathematical modeling ability tests showed that the average score of posttest was improved compared to the pretest, and that the experiences of mathematics-centered STEAM classes provided in this study had a positive effect on improving the mathematical modeling ability of first-year middle school students. Second, STEAM classes were more effective in solving mathematical modeling problems that require students' creative and divergent thinking. Third, the content analysis of student responses for each subquestion showed that STEAM classes were especially more helpful in activating students' mathematical model construction and validating steps.

A Study on the Characteristics of Flexibility in Interior Architectural Composition -focused on Mathematical Arrangement Organization- (실내공간구성의 가변적 표현특성에 관한 연구 -수학적 배열원리를 중심으로-)

  • 이주현;신홍경
    • Korean Institute of Interior Design Journal
    • /
    • no.21
    • /
    • pp.10-16
    • /
    • 1999
  • Mathematics is considered to the beginning of designing thinking because of the sense of logical order system. In this study, it was regarded the mathematics as the logic and the measurement of design system. as is often the case in history, mathematics, it is regard as conceptual model of architectural though, as aesthetic proportional measure and the mirror of thought. The direction of this study is rather multi-sided approaching to the spatial concept than one-sided plane. It is multi-acceptable way to apply mathematical principle to the pace and to be a flexible one. And boundary of interpretation of the flexibility means potential use-ability, and the strictly meaning of flexibility means that the acception of the various Secession and the Change of space. And the various interpretation of the flexibility only can expressed in the relation of opposite concept: the assembly and the disassembly, the expand and the decease, the open and the close and the construct and the de-construct. Mathematics provide the resonable way in architectural thinking and endow the order as logical organizatiov. Regarding these facts, this research is for making it possible to consider the expression property of interior space combination as the way of understanding the accepting of the changes of the times with the mathematical induction, using the rational method like the mathematical arrangement organizatiov.

  • PDF

An Optimality Criteria applied to The Plane Frames (평면 뼈대 구조물에 적용된 최적규준)

  • 정영식;김창규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.17-24
    • /
    • 1995
  • This work proposes an optimality criteria applicable to the optimum design of plane frames. Stress constraints as well as displacement constraints are treated as behavioural constraints and thus the first order approximation of stress constraints is adopted. The design space of practical reinforced concrete frames with discrete design variables has been found to have many local minima, and thus it is desirable to find in advance the mathematical minimum, hopefully global, prior to starting to search a practical optimum design. By using the mathematical minimum as a trial design of any search algorithm, we may not full into a local minimum but apparently costly design. Therefore this work aims at establishing a mathematically rigorous method ⑴ by adopting first-order approximation of constraints, ⑵ by reducing the design space whenever minimum size restrictions become "active" and ⑶ by the of Newton-Raphson Method.

  • PDF

A Design and Implementation of a Web-based DSS for Mathematical Analysis (수리적 분석을 위한 웹 기반 의사결정지원시스템의 설계와 구현)

  • Kim, Sheung-Kown;Kim, Tae-Hyung
    • IE interfaces
    • /
    • v.13 no.3
    • /
    • pp.539-547
    • /
    • 2000
  • An architecture of a Web-based Decision Support system for mathematical analysis is presented. Front-end modules provide web-client GUI environment for mathematical analysis. The networking architecture is built upon client/server system by Java socket and accesses database by JDBC in WWW. Back-end modules provide decision supporting service and data management for mathematical programming analysis. In the back-end any analysis tools, such as mathematical optimizer, simulation package, or statistics package can be used. As an application example for this implementation, optimal facility replacement decision problem is selected. In the implementation the optimal facility replacement decision problem is formulated as a shortest path problem. It uses Oracle DB and CPLEX package as the mathematical optimizer. While ORAWeb is designed and implemented on the optimal facility replacement problem, it can easily be extended to any decision supporting problems that would require mathematical optimization process.

  • PDF

A study on hydrodynamic coefficients estimation of modelling ship using system identification method

  • Kim, Dae-Won;Benedict, Knud;Paschen, Mathias
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.935-941
    • /
    • 2016
  • Predicting and evaluating ship manoeuvring characteristics are very important not only for the design stage, but also for the existing vessels. There are several ways to predict ship's manoeuvrability and most of them are highly connected with the estimation of hydrodynamic coefficients. This paper presents a new estimation method using the system identification with mathematical algorithms for estimating hydrodynamic coefficient in the ship's mathematical model. Specifically a double ended ferry which equips four azimuth propulsion systems were chosen as benchmark ship and a set of benchmark data which is generated in the fast time simulation software was provided to conduct mathematical optimization process. Also the initial values for the optimization were borrowed from the empirical regression formulas of the simulation software of Rheinmetall Defence ship simulator. Therefore the newly suggested mathematical optimization algorithm gave a successful result for estimation hydrodynamic coefficients. Proper optimization conditions of the objective function and constraints were also verified during the study.