• Title/Summary/Keyword: Mathematical Experiments

Search Result 737, Processing Time 0.026 seconds

NEWTON SCHULZ METHOD FOR SOLVING NONLINEAR MATRIX EQUATION Xp + AXA = Q

  • Kim, Hyun-Min;Kim, Young-jin;Meng, Jie
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1529-1540
    • /
    • 2018
  • The matrix equation $X^p+A^*XA=Q$ has been studied to find the positive definite solution in several researches. In this paper, we consider fixed-point iteration and Newton's method for finding the matrix p-th root. From these two considerations, we will use the Newton-Schulz algorithm (N.S.A). We will show the residual relation and the local convergence of the fixed-point iteration. The local convergence guarantees the convergence of N.S.A. We also show numerical experiments and easily check that the N.S. algorithm reduce the CPU-time significantly.

Dynamic Behavior of a Symmetric Cylinder Type Hydraulic Damper for Semi-Active Control (반능동 제어용 대칭 실린더형 유압 감쇠기의 동적 거동)

  • Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • For the dynamic behavior evaluation of a semi-active vibration control system, it is very important to use an accurate mathematical model for the hydraulic damper applied to the control system. In this study, a mathematical model for a symmetric type hydraulic damper was suggested. In this model, the effects of gas volume and oil temperature variation on the bulk modulus of oil were considered. The dynamic behavior of the damper was investigated by experiments and simulations. It was confirmed that the pressure variation, damping force, and mean pressure variation could be estimated with comparatively good precision by the suggested mathematical model. Moreover, it was shown that excessive pressure rise can be generated by the oil expansion due to the heat energy transformed from the exciting energy of the damper for a short period of the damper operation.

  • PDF

Prediction of Compressive Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with a Mathematical Model

  • Shafieyzadeh, M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This paper deals with the interfacial effects of silica fume (SF) and styrene-butadiene rubber (SBR) on compressive strength of concrete. Analyzing the compressive strength results of 32 concrete mixes performed over two water-binder ratios (0.35, 0.45), four percentages replacement of SF (0, 5, 7.5, and 10 %) and four percentages of SBR (0, 5, 10, and 15 %) were investigated. The results of the experiments were showed that in 5 % of SBR, compressive strength rises slightly, but when the polymer/binder materials ratio increases, compressive strength of concrete decreases. A mathematical model based on Abrams' law has been proposed for evaluation strength of SF-SBR concretes. The proposed model provides the opportunity to predict the compressive strength based on time of curing in water (t), and water, SF and SBR to binder materials ratios that they are shown with (w/b), (s) and (p).This understanding model might serve as useful guides for commixture concrete admixtures containing of SF and SBR. The accuracy of the proposed model is investigated. Good agreements between them are observed.

Construction of function graphs through turtle motion (거북 행동을 통한 함수 그래프 구성)

  • Cho, Han-Hyuk;Song, Min-Ho
    • Communications of Mathematical Education
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2008
  • There are different perspectives on a function graph. For instance, a parabola is defined by movement of a ball in physics and by quadratic function in mathematics. This study deals with the turtle motion, which is local and intrinsic, and the construction of function graphs with mathematical experiments in a microworld. This paper concerns with a function graph which is in the curriculum or in the history of mathematics. In view of pre-calculus, we introduce activities of mathematization about formalizing of length and area of function graphs without knowledge of calculus.

  • PDF

On the Assembly Block Storage Location Assignment Problem (조립블록 저장위치 할당문제에 대한 재고찰)

  • Park, Chang-Kyu;Seo, Jun-Yong
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.116-125
    • /
    • 2009
  • We revisit the assembly block storage location assignment problem (ABSLAP) at a shipyard, in order to compensate for the deficiency in performance verification of the heuristic ABSLAP algorithm developed by the previous study. In this paper, we formulate a mathematical programming model of the ABSLAP, refine elaborately the heuristic ABSLAP algorithm, and show the performance of the developed mathematical programming model and the revised heuristic ABSLAP algorithm. In addition, we explain simulation experiments conducted using the revised heuristic ABSLAP algorithm to investigate the influences of block stockyard layouts and production schedule instability on the block stockyard operations.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

AN IMPROVED ALTERNATIVE WENO SCHEMES WITH PERTURBATIONAL TERMS FOR THE HYPERBOLIC CONSERVATION LAWS

  • KUNMIN SUNG;YOUNGSOO HA;MYUNGJOO KANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.207-231
    • /
    • 2023
  • This paper aims to improve the alternative formulation of the fifth- and sixth-order accurate weighted essentially non-oscillatory (AWENO) finite difference schemes. The first is to derive the AWENO scheme with sixth-order accuracy in the smooth region of the solution. Second, a new weighted polynomial functions combining the perturbed forms with conserved variable to the AWENO is constructed; the new form of tunable functions are invented to maintain non-oscillatory property. Detailed numerical experiments are presented to illustrate the behavior of the new perturbational AWENO schemes. The performance of the present scheme is evaluated in terms of accuracy and resolution of discontinuities using a variety of one and two-dimensional test cases. We show that the resulted perturbational AWENO schemes can achieve fifth- and sixth-order accuracy in smooth regions while reducing numerical dissipation significantly near singularities.

A Study on Anti-Sway Control Using PID Controller for a Remote Crane Operation

  • Lho, Tae-Jung;Park, Dae-Woo;Joo, Hyun-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.67.2-67
    • /
    • 2002
  • $\textbullet$ Contents 1. Introduction $\textbullet$ Contents 2. Mathematical Modeling $\textbullet$ Contents 3. PID Parameter Application $\textbullet$ Contents 4. Simulations and Experiments $\textbullet$ Contents 5. Conclusions

  • PDF

MIXED FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM

  • Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.357-364
    • /
    • 2003
  • A fully discrete $H^1-mixed$ finite element approximation for the single-phase Stefan problem is introduced and the unique existence of the approximation is established. And some numerical experiments are given.

Optimality in Designs of Experiment

  • Choi Kuey-Chung
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.109-113
    • /
    • 2005
  • Optimality for block designs have received much attention in the literature. Here we review these criteria and present results showing their A,D and E connection. Also we acquainted with the mathematical methods of designing optimal experiments. In this paper, we will to do work about optimality in experimental designs.

  • PDF