• Title/Summary/Keyword: Mathematical Experiments

Search Result 737, Processing Time 0.025 seconds

The Effect of Process Parameters on Sealing Quality for Ir-192 Radiation Source Capsule using Resistance Spot Welding (Ir-192 방사선원의 밀봉 용접부 품질에 미치는 저항용접 공정변수의 영향)

  • Han, In-Su;Son, Kwang-Jae;Lee, Young-Ho;Lee, You-Hwang;Lee, Jun-Sig;Jang, Kyung-Duk;Park, Ul-Jae;Park, Chun-Deuk
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • Ir-192 radiation sealed sources are widely employed to the therapeutic applications as well as the non-destructive testing. Production of Ir-192 sources requires a delicate but robust welding technique because it is employed in a high radioactive working environment. A GTA(Gas Tungsten Arc) welding technique is currently well established for this purpose. However, this welding method requires a frequent replacement of the electrode, which results in the delay of the production to take a preparatory action such as to isolate the radiation sources from the working place before getting access to the welding machine. Hence, a resistance welding technique is considered as an alternative method of the GTA welding technique. The advantages of resistance welding are high welding speed and high-rate production. Also it has very long life of electrode comparing to GTA welding. In this study, the resistance welding system and proper welding conditions were established for sealing Ir-192 source capsule. As a results of various experiments, it showed that electrode displacement can be employed as a indicator to predict welding quality. We proposed two mathematical models(linear and curvilinear) to estimate electrode displacement with process parameters such as applied force, welding current and welding time by using regression analysis method. Predicting results of both linear and curvilinear model were relatively good agreement with experiment.

Applications of New Differential Dynamic Programming to the Control of Real-time Reservoir (새로운 미분동적 계획법에 의한 저수지군의 최적제어)

  • Sonu, Jung Ho;Lee, Jae Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.27-42
    • /
    • 1984
  • The complexity and expensiveness of water resources projects have made optimum operation and design by computer-based techniques of increasing interest in recent years. Water resources problems in real world need many decisions under numerous constraints. In addition there are nonlinearities in the state and return function. This mathematical and technical troublesome must be overcome so that the optimum operation polices are determined. Then traditional dynamic optimization method encountered two major-cruxes: variable discretization and appearance of constraints. Even several recent methods which based on the Differential Dynamic Programming(DDP) have some difficulties in handling of constraints. This paper has presented New DDP which is applicable to multi-reservoir control. It is intended that the method suggested here is superior to abailable alternatives. This belief is supported by analysis and experiments(New DDT does not suffer course of dimensionality and requires no discretization and is able to handle easily all constraints nonlinearity).

  • PDF

Study of Wear Characteristics of Hydraulic Equipment Used in Power Plants (발전소용 유압기기의 마모특성 연구)

  • Lee, Yong Bum;Lee, Gi Chun;Chang, Mu Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1183-1188
    • /
    • 2013
  • The reliability of hydraulic equipment used in power plants is especially important because failures that occur in the power plant can have a great ripple effect on human lives and financial losses. In this study, specimens using the materials used in the spool and sleeve of hydraulic valves of power plants have been produced, heat-treated, and tested under the precipitation conditions of phosphate ester hydraulic fluid with a variety of conditions. 23 full factorial designs have been applied to evaluate the significance of factors that affect the wear loss of the specimen, specifically, the load, velocity, and temperature. The significance evaluation was performed on the main effects and two-way interactions for wear loss based on the experiment results, and the mathematical equations between the wear loss and the three factors were derived from the analysis results.

Parameter Identification of Vector-Controlled Induction Motor using Skin Effect of Rotor Bars at Standstill (회전자 바의 표피효과를 이용한 벡터제어용 유도전동기의 정지형 상수추정)

  • Kwon, Young-Su;Moon, Sang-Ho;Lee, Jeong-Hum;Kwon, Byung-Ki;Choi, Chang-Ho;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.403-410
    • /
    • 2008
  • This paper suggests a standstill estimator to accurately identify induction motor (IM) parameters necessary for the vector control. A mathematical model that faithfully represents the general skin effect is introduced. Then, two exciting signals with a different frequency are sequentially injected to track the parameters based on the skin effect of the rotor bar. Little knowledge of the unknown motor allows the proposed methodology to employ a closed-loop control of an injected current, rather than open-loop voltage injection approaches. Subsequently, this control scheme proactively prevents electrical accidents resulting from an inadequate open-loop voltage injection. We develop a specialized offline commissioning test to compensate the phase delay resulting from the drive, which significantly affects the precision of the IM parameters. The effectiveness of the identification technique is validated by means of experiments performed on the three different IMs.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

Availability Analysis of Multiplex Systems using Software Rejuvenation Method (소프트웨어 재활 기법을 적용한 다중계 시스템의 가용도 분석)

  • Park, Kie-Jin;Kim, Sung-Soo;Kim, Jai-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.8
    • /
    • pp.730-740
    • /
    • 2000
  • The software rejuvenation method for highly available multiplex systems uses a pro-active fault-tolerant approach to handle system failures. The software rejuvenation prevents failures from occurring, while the previous methods recover from failures after happening. Especially, since the software aging proceeds fast in the software used for the multimedia mobile computing due to the loss of communications or data, the preventive method from failures using software rejuvenation can be used for the multimedia mobile computing. In this paper, according to the operational parameters such as rejuvenation period, rejuvenation time, failure rate and repair rate of the servers, number of running servers, duration of running time, and type of running modes, we calculate steady-state probabilities, downtime, availability, and cost of the multiplex systems using software rejuvenation method. We validate the closed-form solutions of the mathematical model by experiments based on various operational parameters and find that the software rejuvenation method can be adopted as preventive fault-tolerant technique. The failure rate and unstable rate of the servers are essential factors for the decision making of the rejuvenation policies.

  • PDF

Analysis of Z-Source Inverters in Wireless Power Transfer Systems and Solutions for Accidental Shoot-Through State

  • Wang, Tianfeng;Liu, Xin;Jin, Nan;Ma, Dianguang;Yang, Xijun;Tang, Houjun;Ali, Muhammad;Hashmi, Khurram
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.931-943
    • /
    • 2018
  • Wireless power transfer (WPT) technology has been the focus of a lot of research due to its safety and convenience. The Z-source inverter (ZSI) was introduced into WPT systems to realize improved system performance. The ZSI regulates the dc-rail voltage in WPT systems without front-end converters and makes the inverter bridge immune to shoot-through states. However, when the WPT system is combined with a ZSI, the system parameters must be configured to prevent the ZSI from entering an "accidental shoot-through" (AST) state. This state can increase the THD and decrease system power and efficiency. This paper presents a mathematical analysis for the characteristics of a WPT system and a ZSI while addressing the causes of the AST state. To deal with this issue, the impact of the system parameters on the output are analyzed under two control algorithms and the primary compensation capacitance range is derived in detail. To validate the analysis, both simulations and experiments are carried out and the obtained results are presented.

Analysis of Transmission Delay and Fault Recovery Performance with EtherCAT for In-Vehicle Network (차량내 통신을 위한 EtherCAT 네트워크의 전송지연 및 고장복구 특성 분석)

  • Kim, Dong-Gil;Jo, Youngyun;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1036-1044
    • /
    • 2012
  • Thanks to progressive development of IT technology, the number of intelligent devices communicating each other through an In-Vehicle Network(IVN) has been steadily increasing. It is expected that the required network bandwidth and network nodes for vehicle control in 2015 will be increased by two times and one and half times as compared to in 2010, respectively. As a result, many researchers in automotive industry has showed a significant interest on industrial Ethernets, such as EtherCAT and TTEthernet. This paper addresses an analysis on transmission delay and fault recovery performance with an EtherCAT network which is being considered as an IVN. A mathematical model based on the analysis is verified through a set of experiments using an experimental network setup.

Incremental Model Formulation of Creep under Time-varying Stress History (시간이력 하중을 받는 콘크리트의 점증적 크리프 모델)

  • Park, Yeong-Seong;Shin, Dong-Hun;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.755-761
    • /
    • 2014
  • Internal or external restraint of concrete strain due to drying shrinkage and creep in concrete structures causes mechanical strain and becomes a source of persistent change in creep-causing stress conditions. Mathematical modeling to incorporate the persistent change of creep-inducing stress is generally achieved with consideration of the ages of concrete and concrete properties at the times of loadings, and stress history. This paper presents an incremental format of creep model based on parallel creep concept to depict the creep under time-varying stress history in developing creep strain. Laboratory experiments are carried out to validate the performance of the presented creep model. Typical creep phenomena are addressed through the comparisons between the measured and predicted creep strains.

The ex-Gaussian analysis of reaction time distributions for cognitive experiments (ex-Gaussian 모형을 활용한 인지적 과제의 반응시간 분포 분석)

  • Park, Hyung-Bum;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.63-76
    • /
    • 2014
  • Although most behavioral reaction times (RTs) for cognitive tasks exhibit positively skewed distributions, the majority of studies primarily rely on a measure of central tendency (e.g. mean) which can cause misinterpretations of data's underlying property. The purpose of current study is to introduce procedures for describing characteristics of RT distributions, thereby effectively examine the influence of experimental manipulations. On the basis of assumption that RT distribution can be represented as a convolution of Gaussian and exponential variables, we fitted the ex-Gaussian function under a maximum-likelihood method. The ex-Gaussian function provides quantitative parameters of distributional properties and the probability density functions. Here we exemplified distributional analysis by using empirical RT data from two conventional visual search tasks, and attempted theoretical interpretation for setsize effect leading proportional mean RT delays. We believe that distributional RT analysis with a mathematical function beyond the central tendency estimates could provide insights into various theoretical and individual difference studies.