• Title/Summary/Keyword: Material substitution

Search Result 446, Processing Time 0.029 seconds

The Magnetic and Magnetocaloric Properties of the Perovskite La0.7Ca0.3Mn1-xNixO3

  • Hua, Sihao;Zhang, Pengyue;Yang, Hangfu;Zhang, Suyin;Ge, Hongliang
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.34-38
    • /
    • 2013
  • This paper studies the effects of the Mn-site substitution by nickel on the magnetic properties and the magnetocaloric properties of $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$ (x = 0, 0.05 and 0.1). The orthorhombic crystal structures of the samples are confirmed by the room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ni doping content was investigated. The samples with x = 0 had the first order phase transition, while the samples with x = 0.05 and 0.1 had the second order phase transition. As the concentration of Ni increased, the maximum entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) decreased gradually, from 2.78 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0) to 1.02 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0.1), in a magnetic field change of 15 kOe. The measured value of $T_C$ was 185 K, 150 K and 145 K for x = 0, 0.05 and 0.1, respectively. The phase transition temperatures became wider as x increased. It indicates that the Mn-site substitution by Ni may be used to tailor the Curie temperature in $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$.

Improvement of Structure and Electrochemical Properties of LiNi0.5Mn1.5O4 for High Voltage Class Cathode Material by Cr Substitution (Cr 치환을 이용한 고전압용 양극 활물질 LiNi0.5Mn1.5O4의 구조와 전기화학적 성능의 개선)

  • Eom, Won-Sob;Kim, Yool-Koo;Cho, Won-Il;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.82-87
    • /
    • 2005
  • The cathode material, $LiNi_{0.5}Mn_{1.5}O_4$, for high voltage applications of Li-ion batteries exhibits impurity phases due to oxygen deficiency during the high temperature heat treatment. The impurity phase reduces the electrochemical properties of the electrode since the deficiency spinel structure disturbs the lithium ion intercalation and deintercalation. In this study, Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4(0{\leq}x{\leq}0.05)$ powders are synthesized by a sol-gel method in order to reduce the amount of the impurity phases in the $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4$. Thermal analysis of the cathode material shows that the $LiNi_{0.5}Mn_{1.5}O_4$ without Cr substitution looses $2\%$ of its weight due to oxygen deficiency but the amount of weight loss is diminished when Cr is substituted. XRD analysis also supports the reduction of the impurity phases in the cathode after chromium substitution, suggesting that the improvement of the electrochemical properties such as the capacity retention and electrochemical stability are attributed to the low content of impurity phases in the Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4.$

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF

A Case of Workers' Exposure Reductions for Chemicals in a Polyurethane Pad Process through the Substitution of Raw Materials (폴리우레탄 패드 공정에서의 원료물질 대체에 따른 근로자 노출저감 사례)

  • Jang, Jae-Kil;Park, Hyunhee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • Objectives: The aim of this case study is to verify the chemical exposure reductions for various chemicals by substituting the ingredients of raw materials in a polyurethane(PU) foaming industry. The PU foaming process was making various passenger car seats from chemicals such as toluene diisocinate(TDI), methylene bisphenyl isocyanate(MDI) and polyols. Methods: Basic process data and workers' health effects could be gathered by interviewing managers and reviewing previous exposure monitoring data. Amine, aldehyde and isocyanate chemicals were analyzed following the NIOSH-NMAM. Area sampling methods rather than personal sampling were introduced for this field investigation. Results: Two amines, triethylene diamine(TEDA) and N,N,N',N'-Tetramethyl-1,6- hexanediamine(TMHDA) were identified in raw polyol, cured PU foam and air. The average concentrations of TEDA and TMHDA showd less than 1 ppm by area sampling; however, that caused halovision among workers in PU-PAD process. Aldehydes and isocyanates were detected in the air while the concentrations were relatively low compare to occupational exposure limits. Successful raw material substitution from nonreactive amine to reactive amine could reduces air-borne amine and aldehyde levels by about 70%. Halovision had been disappeared successfully in the process. Conclusions: Several amines caused halovision among workers in PU-PAD process, especially during summer season in spite of relatively low levels. Combination of reactive amines into urethane foam could reduced vapor generation into air, which resulted in the elimination of eye troubles in the process.

An Experimental Study on Permeability Characteristics of Blast Furnace Slag Concrete (고로슬래그 콘크리트의 투수특성에 관한 실험적 연구)

  • Paik, Shinwon;Oh, Daeyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.9-12
    • /
    • 2013
  • The pavement is generally used on the highways, local loads, roads for bicycle riding and neighborhood living facility such as parking lot, plaza, park and sports facilities. However, the pavement material that is usually used on the most of roads is impermeable asphalt-concrete and cement-concrete. If the pavement material is impermeable, many problems can be happened on the drainage facilities in the rainy season. Additionally, a lot of rainwater on the pavement surface cannot permeate to the underground and flows to the sewage ditch, stream and river, etc. If a lot of rainwater flows at once, the floods can be out along the streams and rivers. So, underground water can be exhausted. Micro organisms cannot live in the underground. Recently, many studies has been conducted to exploit the permeable concrete that has high performance permeability. However, it is required to develop the permeable concrete which has high strength and durability. In this study, permeable and strength tests were performed to investigate the permeable characteristics of porous concrete according to fine aggregate content and substitution ratio of blast furnace slag. In this test, crushed stones with 10~20 mm and sand with 5~10 mm were used as a coarse aggregate and a fine aggregate respectively. The substitution ratio of blast furnace slag to cement weight is 0 %, 15 %, and 30 %. The ratio of fine aggregate to total aggregate is 0 %, 18 %, and 35 %. As a result, permeability coefficient was decreased according to fine aggregate ratio of total aggregate. Compressive strength was also decreased according to substitution ratio of blast furnace slag.

A Study on the Water-soluble Fiber at the Room Temperature using Carboxymethylcellulose(CMC) Synthesis (Carboxymethylcellulose 제조공정을 이용한 상온에서의 수용성 섬유에 관한 연구)

  • Song, Ho-Jun;Choi, Youngmin;Park, Jin-Won
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.105-116
    • /
    • 2005
  • Carboxymethylcellulose(CMC) which is water soluble at room temperature was manufactured from the cellulose material in this study. Experimental parameters were reaction temperature, time and concentration of NaOH and monochloroacetic acid. CMC was tested for solubility, degree of substitution(D.S.) and tensile strength. The surface structure of CMC fiber was tested using scanning electron microscope(SEM). CMC manufactured from viscose rayon was affected by the chemical concentration rather then the reaction time and temperature. Also, degree of substitution is closely related to the solubility of the CMC.

  • PDF

Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model

  • Beycioglu, Ahmet;Gultekin, Adil;Aruntas, Huseyin Yilmaz;Gencel, Osman;Dobiszewska, Magdalena;Brostow, Witold
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.247-255
    • /
    • 2017
  • This study aimed to develop a Rule Based Mamdani Type Fuzzy Logic (RBMFL) model to predict the flexural strengths and compressive strengths of blended cements under elevated temperatures. Clinoptilolite was used as cement substitution material in the experimental stage. Substitution ratios in the cement mortar mix designs were selected as 0% (reference), 5%, 10%, 15% and 20%. The data used in the modeling process were obtained experimentally, after mortar specimens having reached the age of 90 days and exposed to $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ temperatures for 3 hours. In the RBMFL model, temperature ($C^{\circ}$) and substitution ratio of clinoptilolite (%) were inputs while the compressive strengths and flexural strengths of mortars were outputs. Results were compared by using some statistical methods. Statistical comparison results showed that rule based Mamdani type fuzzy logic can be an alternative approach for the evaluation of the mechanical properties of concrete under elevated temperature.

Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of Bi0.5/(Na0.82K0.18)0.5TiO3 Ceramics

  • Do, Nam-Binh;Lee, Han-Bok;Yoon, Chang-Ho;Kang, Jin-Kyu;Lee, Jae-Shin;Kim, Ill-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.64-67
    • /
    • 2011
  • The effect of Ta substitution on the crystal structure, ferroelectric, and piezoelectric properties of $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}Ti_{1-x}Ta_xO_3$ ceramics has been investigated. The Ta doping resulted in a transition from coexistence of ferroelectric tetragonal and rhombohedral phases to an electrostrictive pseudocubic phase, leading to degradations of the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electricfield-induced strain was significantly enhanced by the Ta substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 566 pm/V under an applied electric field 6 kV/mm when 2% Ta was substituted on Ti sites. The abnormal enhancement in strain was attributed to the pseudocubic phase with high electrostrictive constants.

Physical Properties and Hydroxyapatite Formation of Low Alkali Containing Bioglass (저농도 알칼리 생체유리의 물성 및 Hydroxyapatite 형성)

  • 김용수;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1521-1528
    • /
    • 1994
  • To improve mechanical strength of bioglass, it is considered to use the glass as a coating material to alumina, but the difference in thermal expansion coefficient between two materials is too high to make a good coating. The aim of the present study, therefore, is to find out proper glass composition matching its thermal expansion coefficient to that of alumina without losing biocompatibility. In the present work, various glasses were prepared by substituting B2O3 and CaO for Na2O in the glass system of 55.1%SiO2-2.6%P2O5-20.1%Na2O-13.3%CaO-8.9%CaF2 (in mole%), and the thermal expansion property and reaction property in tris-buffer solution for the resulting glasses were measured. The thermal expansion coefficient of the glass was decreased with the substitution of B2O3 for Na2O, and it became close to that of alumina in the glass in which 8 mole% of CaO was substituted for Na2O. Hydroxyapatite formation was enhanced and silica rich layer thickness was decreased with B2O3 substitution for Na2O. CaO substitution for Na2O didn't deteriorated the hydroxyapatite development.

  • PDF

Influence on mechanical property of C-S-H(I) due to its structural modification (C-S-H(I)의 분자구조변형을 통한 기계적 거동의 변화)

  • Oh, Jae-Eun;Monteiro, Paulo J.M.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.473-474
    • /
    • 2010
  • This high pressure synchrotron X-ray diffraction study examined the change of bulk modulus of C-S-H(I), core material creating strength in alkali-activated slag cement as well as structural model of C-S-H, mainly attributed to Al-substitution for Si, which occurs at the bridging tetrahedral sites in dreierketten silicate chains in the nanostructure of C-S-H(I). This study presents that Al-substitution in C-S-H(I) does not affect the bulk modulus of C-S-H(I), which is surprising because many researchers have expected that Al-substitution should induce some critical change in mechanical properties of C-S-H(I).

  • PDF