• Title/Summary/Keyword: Material property variation

Search Result 222, Processing Time 0.029 seconds

A Study on the Effects of Water Absorption on the Thermal Conductivity of Insulation Materials (수분 흡수가 단열재의 열전도계수에 미치는 영향에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Tae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • IInsulation material is generally used for preventing heat loss from heat transport fluids, and water absorption severely reduces the insulation property. The purpose of this study is to evaluate the amount of water absorption supplied by the pouring method and spraying method, to investigate the effects of water absorption on the thermal conductivity of an insulation material, and modeling the relation between water absorption and thermal conductivity. E-glass, a kind of glass fiber, and HYPERLITE, mainly composed of pearlite, are selected, to compare hygroscopic and insulation properties. E-glass is found to have much higher water absorptivity, compared to HYPERLITE. The thermal conductivity of the water-absorbed E-glass is increased by more than 150%, compared to that of no absorption, while variation of the thermal conductivity of HYPERLITE with water absorption is insignificant. A three-stage model of water absorption for thermal conductivity is developed, and the modeling results are found to be in good agreement with the experimental data.

Effect of Thermal Properties of Bentonite Buffer on Temperature Variation (벤토나이트 완충재의 열물성이 온도 변화에 미치는 영향)

  • Kim, Min-Jun;Lee, Seung-Rae;Yoon, Seok;Jeon, Jun-Seo;Kim, Min-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • A buffer in a geological disposal system minimizes groundwater inflow from the surrounding rock and protects the disposed high-level waste (HLW) against any mechanical impact. As decay heat of a spent fuel causes temperature variation in the buffer that affects the mechanical performance of the system, an accurate estimation of the temperature variation is substantial. The temperature variation is affected by thermal and material properties of the system such as thermal conductivity, density and specific heat capacity of the buffer, and thus these factors should be properly included in the design of the system. In particular, as the thermal properties are variable depending on the density and water content of the buffer, consideration of the effects should be included in the analysis. Hence, in this study, a numerical model based on finite element method (FEM) which is able to consider the change of density and water content of the buffer was established. In addition, using the numerical model, a parametric study was conducted to investigate the effect of each thermal property on the temperature variation of the buffer.

Effects of Material Properties and Fabric Structure Characteristics of Graduated Compression Stockings (GCS) on the Skin Pressure Distributions

  • Liu Rong;Kwok Yi-Lin;Li Yi;Lao Terence-T;Zhang Xin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.322-331
    • /
    • 2005
  • Graduated compression stockings (GCS) have been widely used for the prophylaxis and treatment of venous diseases. Their gradient pressure function largely related to their fabric structure and material properties. By combing fabric physical testing and wear trials, this study investigated the GCSs fabric structure and material properties at different locations along the stocking hoses, and quantitatively analyzed the effects of fabrics on skin pressure longitudinal and transverse distributions. We concluded that, Structural characteristics and material properties of stocking fabrics were not uniform along the hoses, but a gradual variation from ankle to thigh regions, which significantly influenced the corresponding skin pressure gradient distributions; Tensile (WT, EM) and shearing properties (G) generated most significant differences among ankle, knee and thigh regions along the stocking hose, which significantly influenced the skin pressure lognitudinal gradient distribution. More material indices generating significant gradual changes occurred in the fabric wale direction along stocking hose, meaning that materials properties in wale direction would exert more important impact on the skin pressure gradient performances. And, the greater tensibility and smoother surface of fabric in wale direction would contribute to put stocking on and off, and facilitate wearers' leg extension-flexion movements. The indices of WT and EM of stocking fabrics in series A have strong linear correlations with skin pressure lognitudinal distribution, which largely related to their better performances in gradual changes of material properties. Skin pressure applied by fabric with same material properties produced pronounced differences among four different directions around certain cross-sections of human leg, especially at the ankle region; and, the skin pressure magnitudes at ankle region were more easily influenced by the materials properties, which were considered to be largely related to the anatomic structure of human leg.

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.

A New Ray Tracing Method of a Plastic Lens Connected with finite-Element Analysis (유한요소해석과 연계한 플라스틱 렌즈의 광선추적 기법)

  • Park K.;Lee S. K.;Jeon K. S.;Mo P. S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.100-107
    • /
    • 2005
  • The present work covers a new ray tracing scheme of an injection-molded plastic lens linked with finite element analysis fur injection molding processes. The traditional ray tracing schemes have been based on the assumption that optical property of the lens is homogeneous throughout the entire volume. However, this assumption is quite unrealistic for injection-molded plastic lenses since material properties vary at every point due to injection molding effects. In order to consider non-homogeneous property of a lens, a modified ray tracing method is proposed in connection with finite element analysis of injection molding. Through the analysis of the injection molding process, the distribution of refractive indices can be obtained. This information is then utilized in the proposed ray tracing scheme based on finite element meshes so as to take into account variation of the refractive indices. The effect of mold temperature is also investigated through finite element analysis, and the relevant optical quality is evaluated through the proposed ray tracing simulation.

The analysis of Ag doping mechanism by photo-exposure (광노출에 따른 Ag도핑 메카니즘 해석)

  • 이현용;김민수;정홍배
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.472-477
    • /
    • 1995
  • The degree of the photodoping process in Ag(100[.angs.])/a-Se$_{75}$Ge$_{25}$(1500[.angs.]) films has measured as a function of the photon energy between 1.5[eV] and 2.9[eV] with the exposing time. The "window" characteristics of Ag occur at 3400[.angs.] (3.65[eV]) and Ag is almost transparent in this region. It is shown that transmittance is almost constant (40-50%) for the wavelength ranges of our experiment. It is found that the energy gap of a unexposed a-Se$_{75}$Ge$_{25}$ film is 1.81[eV]. Ag photodoping process results in the photodarkening effect which the absorption edge shifts to the long wavelength. Especially, very large band shift (-0.3[eV]) is obtained by exposing He-Ne laser(6328[.angs.]).. We have obtained "the U-type property" for Ar He-Ne and semiconductor laser. It is associated with the variation of energy gap(E$_{g}$) with photo-dose and substantially is explained by DWP model.l.gap(E$_{g}$) with photo-dose and substantially is explained by DWP model.

  • PDF

Microstructural Analysis and High Temperature Compression Behavior of High Temperature Degradation on Hastelloy X (Hastelloy X의 고온열화에 따른 미세구조 및 고온압축특성)

  • Kim, Gil-Su;Jo, Tae-Sun;Seo, Young-Ik;Ryu, Woo-Seog;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.318-322
    • /
    • 2006
  • Short-term high temperature degradation test was conducted on Hastelloy X, a candidate tube material for high temperature gas-cooled reactors (HTGR), to evaluate the variation of microstructure and mechanical property in air at $1050^{\circ}C$ during 2000 h. The dominant oxide layer was Cr-oxide and a very shallow Cr-depleted region was observed below the oxide layer. At the beginning of degradation, the island shape $M_6C$ precipitate (M=Mo-rich, Fe, Ni, Cr) was observed in matrix region. After 2000 h degradation, precipitate shape was changed to the chain shape and increased amount of precipitate. These results influenced mechanical property of the specimen which exposed in high temperature. Yield strength was decreased from 115MPa to 89 MPa after 24 h and 2000 h exposure, respectively.

Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete (포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구)

  • Keon, Seung-Zun;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.185-197
    • /
    • 2001
  • This paper dealt with modification of effective crack length model (ECM) by adding Poisson's ratio term to evaluate fracture toughness of asphalt concrete which varies its material property by temperature. The original ECM model was developed for solid materials, such as cement concrete, and Poisson's ratio of materials was not considered. However, since asphalt concrete is sensitive to temperature variation and changes its Poisson's ratio by temperature, it should be taken into consideration to know exact fracture property under various temperatures. Four binders, including 3 polymer-modified asphalt (PMA) binders, were used to make a dense-grade asphalt mixture and 3-point bending test was peformed on notched beam at low temperatures, from -5oC to 35oC. Elastic modulus, flexural strength and fracture toughness were obtained from the test. The results showed that, since Poisson's ratio was considered, the more accurate test values could be obtained using modified ECM equation than original ECM. PMA mixture showed higher stiffness and fracture toughness than normal asphalt mixture under very low temperatures.

  • PDF

Variation of Microstructure and Property of the Electro-slag Remelted M2 Steel with Heat Treatment Conditions (ESR한 M2강의 열처리에 따른 미세조직 및 물성 변화)

  • Lee, Ki-Jong;Kim, Moon-Hyun;Lee, Jeong-Keun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.281-287
    • /
    • 2002
  • In order to investigate the variation of microstructure and property of the Electro-slag Remelted M2 steel, microstructure observation, hardness, and bending test were performed by using optical microscope. SEM/EDS, rockwell hardness tester, charpy impact tester and bending tester, respectively. It was revealed that the number of inclusions and content of gas elements(S, O, N) in M2 steel fabricated by ESR process decreased markedly compared to those of AIM. It seems to be due to refining effect of ESR process. The volume fraction of carbides in quenched and tempered specimens after austenitizing at 1150$^{\circ}C$ and 1240$^{\circ}C$ was measured. The volume fraction of grain boundary carbides were found to be similar for both specimens. However, The volume fraction of carbides in grain decreased with an increase of austenitizing temperature. When specimen was austenitized at 1150$^{\circ}C$, grain boundary carbides showed needle like morphology. But, the carbides were broken with an increase of austenitizing temperature. The specimen austenitized at 1240$^{\circ}C$ showed higher hardness and lower bending strength compared to that of 1150$^{\circ}C$. As expected, toughness increased with sub-zero quenching treatment.

The Patent Analysis of Thermally Activated Delayed Fluorescence Materials (열 활성 지연 형광(TADF) 재료의 특허 분석)

  • Jo, Dae Seong;Sung, Min Jae;Kim, Min Ho;Choi, Seung Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • The TADF (Thermally Activated Delayed Fluorescence)-based OLED patents were analyzed and 4410 of patents were selected at the first step. And 975 patents were screened at second step. Finally, 39 key patents were selected. Patent qualitative analysis was performed in these patents to find which of the four property (lifetime, efficiency, color purity, driving voltage) of TADF was improved. Also, the variation of the hosts and dopants in patented TADF material were surveyed and their combination was analyzed. According to the analysis of the variation and the combination, some of TADF compounds were used as an assistant dopant to transfer energy. In addition, it tended to transfer energy by forming exciplex that shows TADF characteristics. These were similar to the mechanism of the introduced hyper fluorescence and could solve the inherent TADF problems. Finally, patent citation network was illustrated to visualize the patent citations and citations relationship of the major applicants in the current TADF-based OLED technology. The leading patent applicant organization was revealed as Idemitsu Kosan, Semiconductor Energy Laboratory, UDC, Princeton University, Merck and Nippon Steel & Sumikin Chemical, which had lots of reference patents 559, 524, 477, 310, 258, and 167, respectively.