• 제목/요약/키워드: Material properties of ice

검색결과 39건 처리시간 0.024초

남극 아문젠해에서 계측된 해빙의 재료특성 비교 분석 (A Comparative Analysis of Sea Ice Material Properties in the Amundsen Sea, Antarctica)

  • 최경식;김현수;하정석;이춘주
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.254-258
    • /
    • 2014
  • Field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. To correctly estimate ice load and ice resistance on ship's hull, It is essential to understand the material properties of sea ice during ice field trials and to perform the proper experimental procedure by gathering sea ice data. A measurement of sea ice properties was conducted during February and March of 2012 with the Korean Icebreaking research vessel "ARAON" in the Amundsen Sea, Antarctica. This paper describes a test procedure to obtain sea ice data which provide basic information to estimate ice loads and icebreaking performance of the ship. The data gathered from sea ice field trials during the 2012 Antarctic voyage of the ARAON includes ice temperature/salinity/density and the compressive/flexural strength of sea ice. This paper analyses the gathered Antarctic sea ice material properties comparing with the previous data obtained during ARAON's Arctic and Antarctic voyages in 2010.

Comparison of EG/AD/S and EG/AD model ice properties

  • Kim, Jung-Hyun;Choi, Kyung-Sik
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.32-36
    • /
    • 2011
  • EG/AD/S type model ice was originally selected as the primary model ice material for the MOERI ice tank in Korea. The existence of a sugar component in the EG/AD/S mixture may cause a serious maintenance problem. In order to understand the influence of sugar in the original model ice, a series of tests with EG/AD/S and EG/AD model ices were performed, and their material properties compared. Because the target strength of model ice in the full-scale MOERI ice tank is expensive and difficult to control, tests were performed under cold room conditions using a miniature ice tank. This paper describes the material properties of EG/AD/S and EG/AD model ices, such as flexural strength, compressive strength and elastic modulus. In order to obtain the desired strength and stiffness levels for the model ice, a warm-up process was introduced.

Cold Room을 이용한 모형빙의 재료특성에 관한 실험적 연구 (An Experimental Study for the Mechanical Properties of Model Ice Grown in a Cold Room)

  • 김정현;최경식;정성엽;서영교;조성락;이춘주
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.64-70
    • /
    • 2008
  • A full-scale field experiment is an important part in the design of ships and offshore structures. Full-scale tests in the ice-covered sea, however, are usually very expensive and difficult tasks. Model tests in a refrigerated ice tank may substitute this difficulty of full-scale field tests. One of the major tasks to perform proper model tests in an ice towing tank is to select a realistic material for model ice which shows correct similitude with natural sea ice. This study focuses on the testing material properties and the selection of model ice material which will be used in an ice model basin. The first Korean ice model basin will be constructed at the Maritime & Ocean Engineering Research Institute (MOERI) in 2009. With an application to the MOERI ice model basin, in this study the material properties of EG/AD/S model ice of IOT (Institute for Ocean Technology) Canada, were tested. Through comprehensive bending tests, the elastic modulus and the flexural strength of EG/AD/S model ice were evaluated and the results were compared with published test results from Canada. Instead of using an ice model basin, a cold room facility was used for making a model ice specimen. Since the cold room adopts a different freezing procedure to make model ice, the strength of the model ice specimen differs from the published test results. The reason for this difference is discussed and the future development for a making model ice is recommended.

점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석 (Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties)

  • 노인식;신병천
    • 한국해양공학회지
    • /
    • 제7권2호
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

쇄빙연구선 ARAON호를 이용한 북극해 해빙의 재료특성 (1) - 해빙의 두께, 온도, 염도, 밀도 계측 - (Material Properties of Arctic Sea Ice during 2010 Arctic Voyage of Icebreaking Research Vessel ARAON: Part 1 - Sea Ice Thickness, Temperature, Salinity, and Density -)

  • 박영진;김대환;최경식
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.55-61
    • /
    • 2011
  • A field trial in an ice-covered sea is one of the most important tasks in the design of icebreaking ships and offshore structures. To correctly estimate the ice load and ice resistance of a ship's hull, it is essential to understand the material properties of sea ice during ice field trials and to use the proper experimental procedure for gathering effective ice data. The first Korean-made icebreaking research vessel, "ARAON," had her second sea ice trial in the Arctic Ocean during the summer season of 2010. This paper describes the test procedures used to obtain proper sea ice data, which provides the basic information for the ship's performance in an ice-covered sea and is used to estimate the correct ice load and ice resistance of the IBRV ARAON. The data gathered from the sea ice in the Chukchi Sea and Beaufort Sea during the Arctic voyage of the ARAON includes the temperature, density, and salinity of the sea ice, which was believed to be from two-year old ice floes. This paper analyses the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial.

빙해수조용 EG/AD 모형빙의 재료특성 실험 (An Experimental Study on the Material Properties of the EG/AD Model Ice Used for Ice Model Basins)

  • 김정현;최경식
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.49-55
    • /
    • 2011
  • The EG/AD/S model ice, originally developed by Timco (1986), was selected as the primary model ice material for the newly built MOERI Ice Model Basin in Korea. However, the existence of a sugar component in the EG/AD/S mixture may cause a serious maintenance problem, as described in certain references. This study focuses on the tests of the mechanical properties of the EG/AD/S and the EG/AD model ice. In order to understand the influence of sugar in the original EG/AD/S model ice and to find a possible substitute for sugar, a series of tests with the EG/AD model ice were performed, and the results were compared to those of the EG/AD/S model ice. The relatively large size of the MOERI Ice Model Basin made it difficult to control the initial strength of model ice, so it took a much longer time to achieve the target strength. In order to obtain a lower strength and stiffness for the model ice, the amount of chemical additives may be varied to achieve the desired strength level. This paper is a preliminary study aimed at seeking a possible substitute for the original EG/AD/S model ice for utilization in a large-scale ice tank. To understand the influence of sugar in the original EG/AD/S model ice, the mechanical properties of the EG/AD/S and EG/AD model ice, such as flexural strength, compressive strength, and elastic modulus, were tested in the laboratory condition and compared to each other. The warm-up procedure seems to be an important factor to reduce ice strength in the tests, so it is discussed in detail.

쇄빙연구선 ARAON호를 이용한 북극해 해빙의 재료특성 (2) - 해빙의 압축강도, 굽힘강도 및 결정구조 - (Material Properties of Arctic Sea Ice during 2010 Arctic Voyage of Icebreaking Research Vessel ARAON: Part 2 - Compressive Strength, Flexural Strength, and Crystal Structures)

  • 김대환;박영진;최경식
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2012
  • To correctly estimate ice load and ice resistance for a ship's hull, it is essential to understand the material properties of sea ice during ice field trials and to use the proper experimental procedure for gathering ice strength data. The first Korean-made icebreaking research vessel (IBRV), ARAON, had her second sea ice trial in the Arctic Ocean during July and August of 2010. This paper describes the test procedures used to properly obtain sea ice strength data, which provides the basic information on the ship's performance in an ice-covered sea and can be used to estimate the correct ice load and ice resistance on the IBRV ARAON. The data gathered from three sea ice field trials during the Arctic voyage of the ARAON includes the ice compressive strength, flexural strength, and failure strain of sea ice. This paper analyzes the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial in January 2010.

Cold Room을 이용한 얼음 및 동토의 재료특성 계측 실험기법의 표준화 (Standardization of Ice Mechanics Experimental Procedures in a Cold Room)

  • 김정현;최경식;서영교
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.60-66
    • /
    • 2007
  • The first Korean cold room facility for ice mechanics experiments was assembled in 2004. Since then, the $4m{\times}6m$ cold room facility has been used, extensively under various environmental and loading conditions. After reviewing published references on cold room testing methods and also by trial and error, the standard procedures for testing and preparing laboratory ice material were established for the measurement of basic ice properties. In this paper, laboratory experimental techniques with the cold room facility and standard procedures established for ice material properties are introduced. Test specimens include laboratory-grown fresh water ice and frozen soils. Tests are carried out for unconfined compressive strength. Preparation and dimension of the specimen are the most important issues arising in cold room tests. The details of specimen preparation, testing procedure and strength test results are also discussed.

물성치의 공간분포를 고려한 빙 시험편의 확률론적 강도평가 (Probabilistic Strength Assessment of Ice Specimen considering Spatial Variation of Material Properties)

  • 김호준;김유일
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.80-87
    • /
    • 2020
  • As the Arctic sea ice decreases due to various reasons such as global warming, the demand for ships and offshore structures operating in the Arctic region is steadily increasing. In the case of sea ice, the anisotropy is caused by the uncertainty inside the material. For most of the research, nevertheless, estimating the ice load has been treated deterministically. With regard to this, in this paper, a four-point bending strength analysis of an ice specimen was attempted using a stochastic finite element method. First, spatial distribution of the material properties used in the yield criterion was assumed to be a multivariate Gaussian random field. After that, a direct method, which is a sort of stochastic finite element method, and a sensitivity method using the sensitivity of response for random variables were proposed for calculating the probabilistic distribution of ice specimen strength. A parametric study was conducted with different mean vectors and correlation lengths for each material property used in the above procedure. The calculation time was about ten seconds for the direct method and about three minutes for the sensitivity methods. As the cohesion and correlation length increased, the mean value of the critical load and the standard deviation increased. On the contrary, they decreased as the friction angle increased. Also, in all cases, the direct and sensitivity methods yielded very similar results.

Physical and Sensory Properties of Ice Cream Containing Fermented Pepper Powder

  • Yeon, Su-Jung;Kim, Ji-Han;Hong, Go-Eun;Park, Woojoon;Kim, Soo-Ki;Seo, Han-Geuk;Lee, Chi-Ho
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.38-43
    • /
    • 2017
  • This study was conducted to investigate the physical and sensory properties of ice cream containing fermented pepper powder. Three ice cream formulas were manufactured: 1, control; 2, supplemented with 0.1% fermented pepper powder; and 3, supplemented with 0.2% fermented pepper powder. Formulas 2 and 3 had significantly higher viscosity and lower overrun than formula 1 (p<0.05). Additionally, ice creams supplemented with fermented pepper powder were harder and maintained their forms longer than the controls. 0.2% fermented pepper powder added ice cream had no pungency as much as that of control and overall sensory attribute was not significantly different from control. Therefore, ice cream containing fermented pepper powder maintained physical and sensory properties similar to the controls, and maintenance was better. It means fermented pepper powder ice cream can be utilized as the material of functional food (dessert).