• 제목/요약/키워드: Material modelling

검색결과 393건 처리시간 0.024초

Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory

  • Abualnour, Moussa;Chikh, Abdelbaki;Hebali, Habib;Kaci, Abdelhakim;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.489-498
    • /
    • 2019
  • The thermo-mechanical bending behavior of the antisymmetric cross-ply laminates is examined using a new simple four variable trigonometric plate theory. The proposed theory utilizes a novel displacement field which introduces undetermined integral terms and needs only four variables. The validity of the present model is proved by comparison with solutions available in the literature.

EPS의 거동 예측 모델에 관한 실험적 연구 (An Experimental Study on the Modelling for the Prediction of the Behaviour of EPS)

  • 천병식;임해식
    • 한국지반공학회지:지반
    • /
    • 제12권5호
    • /
    • pp.127-136
    • /
    • 1996
  • 초 경량재인 E.P.S(20~30kg/m3)를 성토재로 사용하여 부족한 지지력과 침하에 대한 안정 성을 확보하는 방법이 최근 많이 사용되고 있다. 국내에서는 1993년 인천의 연약지반상 교대 됫채움재로 이 공법이 처음 사용된 이래 점차 활용이 늘어나고 있는 실정이다. 그러나 아직까지 EPS를 성토 재료로 사용한 지반에서 EPS의 거동을 예측하기 위한 합리적인 수치해석 모델이 제시되어 있지 않고 일축압축강도 및 크리프시험 결과에 따른 설계강도만이 제안되어 있는 실정이다. 따라서 본 연구에서는 성토재료로 사용된 EPS의 수치해석 모델을 제시하기 위하여 성토재로 사용되는 여러 종류 밀도의 EPS에 대해 구속압을 변화시키면서 삼축압축시험을 실시하였다. 삼축압축시험 결과를 분석하여 EPS의 축방향 변형률-응력 관계와 이의 도함수 그리고 포아송비를 밀도와 구속압에 의한 함수식으로 나타낼 수 있었다. 이 관계로부터 EPS의 거동을 예측하기 위한 비선형모델을 제안하였다.

  • PDF

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.

흙막이 굴착 시 지층 경사의 영향에 대한 수치해석적 분석 (Numerical analysis of deep excavation in layered and asymmetric ground conditions)

  • 신종호;김학문;김상환;김상길;남택수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1260-1268
    • /
    • 2008
  • In case of deep excavation analysis, the theory of beam on elasto-plastic geo-material (elasto-plastic theory) can not consider the inclined ground layers appropriately. It is frequently assumed that the soil layers are parallel to the surface. However, the soil layers are generally inclined and even asymmetric. The common modelling of the asymmetric half section of the excavation system using the elasto-plastic theory, can lead differences from the real behaviour of ground, which has critical significance in case of deep excavation in urban area. In this study, an attempt to find appropriate modelling methods was made by carrying out a comparative study between the FEM and the elasto-plastic analyses. It is shown that in case of the upward-inclined soil profile the elasto-plastic theory may underestimate the performance of retaining structures.

  • PDF

역전파신경회로망을 이용한 피로균열성장과 수명 모델링에 관한 연구 (A Study on Fatigue Crack Growth and Life Modeling using Backpropagation Neural Networks)

  • 조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.634-644
    • /
    • 2000
  • Fatigue crack growth and life is estimated by various fracture mechanical parameters but affected by load, material and environment. Fatigue character of component without surface notch cannot be e valuated by above-mentioned parameters due to microstructure of in-service material. Single fracture mechanical parameter or nondestructive parameter cannot predict fatigue damage in arbitrary boundary condition but multiple fracture mechanical parameters or nondestructive parameters can Fatigue crack growth modelling with three point representation scheme uses this merit but has limit on real-time monitoring. Therefore, this study shows fatigue damage model using backpropagatior. neural networks on the basis of X-ray half breadth ratio B/$B_o$ fractal dimension $D_f$ and fracture mechanical parameters can predict fatigue crack growth rate da/dN and cycle ratioN/$N_f$ at the same time within engineering estimated mean error(5%).

Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena

  • Ahn, Pyung-An;Shin, Eui-Chol;Kim, Gye-Rok;Lee, Jong-Sook
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.549-558
    • /
    • 2011
  • Application of a generalized equivalent circuit including the electrode condition for the Hebb-Wagner polarization in the frequency domain proposed by Jamnik and Maier can provide a consistent set of material parameters, such as the geometric capacitance, partial conductivities, chemical capacitance or diffusivity, as well as electrode characteristics. Generalization of the shunt capacitors for the chemical capacitance by the constant phase elements (CPEs) was applied to a model mixed conducting system, $Ag_2S$, with electron-blocking AgI electrodes and ion-blocking Pt electrodes. While little difference resulted for the electron-blocking cell with almost ideal Warburg behavior, severely non-ideal behavior in the case of Pt electrodes not only necessitates a generalized transmission line model with shunt CPEs but also requires modelling of the leakage in the cell approximately proportional to the cell conductance, which then leads to partial conductivity values consistent with the electron-blocking case. Chemical capacitance was found to be closer to the true material property in the electron-blocking cell while excessively high chemical capacitance without expected silver activity dependence resulted in the electron-blocking cell. A chemical storage effect at internal boundaries is suggested to explain the anomalies in the respective blocking configurations.

불규칙형상 박판제품의 블랭킹 및 피어싱용 CAD/CAM 시스템 (A CAD/CAM System for Blanking or Piercing of Irregular Shaped-Sheet Metal Products)

  • 최재찬;김철;박상봉
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.174-182
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and machining of irregular shaped-sheet metal product for blanking or piercing operation. An approach to the CAD/CAM system is based on the knowledge-based rules. Knowledge for the CAD/CAM system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, strip-layout, die-layout, data conversion, modelling, and post-processor module. Based on knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of generating NC data automatically according to drawings of die-layout module. Results which are carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing die in this field.

  • PDF

리니어 펄스모터의 추력 산정 (Calculation of the Thrust of Linear Pulse Motor)

  • 김동희;배동관;김광헌;박현수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 기술교육전문연구회
    • /
    • pp.3-7
    • /
    • 2003
  • Usually, the thrust is calculated by magnetic equivalent circuit modelling method for thrust capacity and accuracy progress of position control about a Linear Pulse Motor of which position precision is good and open-loop control is possible within Linear Motors. Analytical thrust deviation exists to calculating magnetic flux density by using Permeance Modelling Method, Finite Element Method, and Velocity Electric Motive Force Method. For calculating accuracy thrust by using these every method, the thrust is calculated and compared by Lorentz Force Method, Magnetic Coenergy Method, and Maxwell correspondence force Method. And that becomes important factor at the comparison of each capacity and parameter of Motor. So this study wants to compare and analyze measurement data and calculating data of the static force of Linear Pulse Motor. and then we can get more accuracy method, calculating the static thrust of Linear Pulse Motor(LPM).

  • PDF

잔골재율 변화에 따른 콘크리트 건조수축 모델링에 관한 연구 (A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Aggregate Ratio of Concrete)

  • 박도경;윤여완;김광서
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.71-77
    • /
    • 2004
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidity. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. Strain Rate of Drying Shrinkage of concrete under the condition of dry air appears to rise by about 20%-30% in proportion as the temperature rises $5^{\circ}C$ when the humidity was held below 10% compared under the condition of dry temperature & Humidity test chamber. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. A general formula with two variables is derived as follow ${\varepsilon}={\alpha}_1+{\beta}_1x_1+{\beta}_2x_2+{\beta}_3x_1^2+{\beta}_5x_2^2$. and also graphed in 3 dimensions, enabling to apply to actual design and predict Strain Rate of Drying Shrinkage in concrete. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as follows. The coefficient of correlation of Drying Shrinkage in Concrete was over 90%.

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.