• Title/Summary/Keyword: Material law

Search Result 1,128, Processing Time 0.026 seconds

Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel

  • Kar, Vishesh R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.693-709
    • /
    • 2015
  • In this article, nonlinear free vibration behaviour of functionally graded spherical panel is analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of functionally graded material are assumed to be varying continuously in transverse direction and evaluated using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of the shell panel is obtained using Hamilton's principle and discretised with the help of nonlinear finite element method. The desired responses are evaluated through a direct iterative method. The present model has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of spherical panel have been discussed through numerical experimentations.

Prediction of Life-Time on the Macroscopic Interface between Solid Materials with Analysis of V-t Characteristics (V-t 특성 분석에 의한 고체 거시계면의 수명 평가)

  • 오재한;이경섭;배덕권;김충혁;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.607-611
    • /
    • 2000
  • The characteristics on the interface between Epoxy and EPDM which are materials of the underground insulation systems of power delivery have studied. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long breakdown life time can be evaluated. AC breakdown strength and life time is improved by oiling to the interface. When the low viscosity oil is spread interface has the highest life time.

  • PDF

Study on the Prediction of the Life-time in the Macroscopic Solid-Solid Interfaces (고체-고체 거시계면의 수명예측에 관한 연구)

  • 박정규;배덕권;정동회;오재한;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.775-778
    • /
    • 2000
  • In this paper, the life-time of macro interface between Epoxy/EPDM which consists in underground power cable joints is predicted. The electrode system of specimen is designed by FEM(finite elements method). The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law, and the long breakdown life time can be evaluated.

  • PDF

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

STUDY OF DYNAMICAL MODEL FOR PIEZOELECTRIC CYLINDER IN FRICTIONAL ANTIPLANE CONTACT PROBLEM

  • S. MEDJERAB;A. AISSAOUI;M. DALAH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.487-510
    • /
    • 2023
  • We propose a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material is described with a linearly electro-viscoelastic constitutive law with long term memory. The mechanical process is dynamic and the electrical conductivity coefficient depends on the total slip rate, the friction is modeled with Tresca's law which the friction bound depends on the total slip rate with taking into account the electrical conductivity of the foundation both. The main results of this paper concern the existence and uniqueness of the weak solution of the model; the proof is based on results for second order evolution variational inequalities with a time-dependent hemivariational inequality in Banach spaces.

Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Naeem, Muhammad Nawaz;Taj, Muhammad;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.251-261
    • /
    • 2020
  • In this article, vibration attributes of single walled carbon nanotubes based on Galerkin's method have been investigated. The influence of power law index subjected to different end supports has been overtly examined. Application of the Hamilton's variational principal leads to the formation of partial differential equations. The effects of different physical and material parameters on the fundamental frequencies are investigated for armchair and zigzag carbon nanotubes with clamped-clamped, simply supported and clamped-free boundary conditions. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of Single-Walled Carbon Nanotubes (SWCNTs) are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. MATLAB software package has been utilized for extracting tube frequency spectra. The obtained results are confirmed by comparing with available literature.

A Study on Thermo-Physical Properties of Microencapsulated Phase Change Material Slurry (마이크로캡슐 잠열 축열재 혼합수의 열물성에 관한 연구)

  • 임재근;최순열;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.962-971
    • /
    • 2004
  • This paper has dealt with thermo-physical properties of microencapsulated phase change material slurry as a latent heat storage material having a low melting point. The measured results of the thermo-physical properties of the test microencapsulated phase change material slurry, those are, density, specific heat, thermal conductivity and viscosity, were discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). The measurements of these properties of microencapsulated phase change material slurry have been carried out by using a specific-gravity meter, a water calorimeter, a differential scanning calorimeter(DSC), a transient hot wire method and rotating type viscometer, respectively. It was clarified that the additional properties law could be applied to the estimation of the density and specific heat of microencapsulated phase change material slurry and also the Euckens equation could be applied to the estimation of the thermal conductivity of this slurry.

Biaxial buckling analysis of sigmoid functionally graded material nano-scale plates using the nonlocal elaticity theory (비국소 탄성이론을 이용한 S형상 점진기능재료 나노-스케일 판의 이축 좌굴해석)

  • Lee, Won-Hong;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5930-5938
    • /
    • 2013
  • The sigmoid functionally graded mateiral(S-FGM) theory is reformulated using the nonlocal elatictiry of Erigen. The equation of equilibrium of the nonlocal elasticity are derived. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical solutions of biaxial buckling of nano-scale plates are presented using this theory to illustrate the effects of nonlocal theory and power law index of sigmoid function on buckling load. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index, (ii) length, (iii) nonlocal parameter, (iv) aspect ratio and (v) mode number on nondimensional biaxial buckling load are studied. To validate the present solutions, the reference solutions are discussed.

Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.191-202
    • /
    • 2020
  • The article brings the study of nonlocal, surface and the couple stress together to apparent the frequency retaliation of FG nanobeams (Functionally graded). For the examination of frequency retaliation, the article considers the accurate spot of neutral axis. This article aims to enhance the coherence of proposed model to accurately encapsulate the significant effects of the nonlocal stress field, size effects together with material length scale parameters. These considered parameters are assimilated through what are referred to as modified couple stress as well as nonlocal elasticity theories, which encompasses the stiffness-hardening and softening influence on the nanobeams frequency characteristics. Power-law distribution is followed by the functional gradation of the material across the beam width in the considered structure of the article. Following the well-known Hamilton's principle, fundamental basic equations alongside their correlated boundary conditions are solved analytically. Validation of the study is also done with published result. Distinct parameters (such as surface energy, slenderness ratio, as nonlocal material length scale and power-law exponent) influence is depicted graphically following the boundary conditions on non-dimensional FG nanobeams frequency.

A Study on Fatigue Crack Growth Model Considering High Mean Loading Effects Based on Structural Stress (고평균하중을 고려한 구조응력 기반의 피로균열성장 모델에 관한 연구)

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.220-225
    • /
    • 2004
  • The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inignorable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data.

  • PDF