• Title/Summary/Keyword: Material flow model

Search Result 627, Processing Time 0.03 seconds

Unsteady Flow in a Cavity Induced by An Oscillatory External Flow (외부유동에 의한 캐버티 내의 비정상 유동특성)

  • 서용권;박준관;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.105-116
    • /
    • 1996
  • In this paper, we report the experimental results for the flow pattern and the material transport around a cavity subject to a sinusoidal external flow at the far region to ward the open side of the cavity. A tilting mechanism is used to generate a oscillatory flow inside a shallow rectangular container having a cavity at one side. The surface flow visualization is performed to obtain the unsteady behavior of vortices generated at two edges situated at the entrance of the cavity. It was found that at the period 4.5 sec., the behavior of the vortices is asymmetric, and there exists a steady residual flow in the cavity. The bottom flow patterns are also visualized. There are two regions outside of the cavity where the bottom fluid particles concentrate. The material transport in this flow model is very peculiar; fluid particles in the cavity flows outward through the passage along the walls starting from the edges, and particles in the outer region approach the cavity from the central region.

  • PDF

Flow Stress Determination of Johnson-Cook Model of Ti-6Al-4V Material using 3D Printing Technique (3D 프린팅으로 제작한 Ti-6Al-4V 재료의 Johnson-Cook 모델의 유동 응력 결정)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • This paper investigates the compressive deformation behavior of direct metal tooling (DMT), processing titanium alloy (Ti-6Al-4V) parts under high strain loading conditions. Split Hopkinson Pressure Bar (SHPB) experiments were performed to determine the flow stress and the coefficients of the Johnson-Cook model. This model is described as a function of strain, strain rate, and temperature. SHPB experiments were performed to characterize the deformation behavior of specimens made with 3D printers, using Ti-6Al-4V material under high temperature and dynamic loading.

Numerical analysis of viscoelastic flows in a channel obstructed by an asymmetric array of obstacles

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.161-167
    • /
    • 2006
  • This study presents results on the numerical simulation of Newtonian and non-Newtonian flow in a channel obstructed by an asymmetric array of obstacles for clarifying the descriptive ability of current non-Newtonian constitutive equations. Jones and Walters (1989) have performed the corresponding experiment that clearly demonstrates the characteristic difference among the flow patterns of the various liquids. In order to appropriately account for flow properties, the Navier-Stokes, the Carreau viscous and the Leonov equations are employed for Newtonian, shear thinning and extension hardening liquids, respectively. Making use of the tensor-logarithmic formulation of the Leonov model in the computational scheme, we have obtained stable solutions up to relatively high Deborah numbers. The peculiar characteristics of the non-Newtonian liquids such as shear thinning and extension hardening seem to be properly illustrated by the flow modeling. In our opinion, the results show the possibility of current constitutive modeling to appropriately describe non-Newtonian flow phenomena at least qualitatively, even though the model parameters specified for the current computation do not precisely represent material characteristics.

Convergence Study on Flow Characteristic due to the Configuration of Water Tank (물탱크의 형상에 따른 유동 특성에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.185-190
    • /
    • 2019
  • In this study, the flow characteristics happening inside water tank due to the configuration of various water tank were analyzed by using a computation fluid dynamics program, ANSYS CFX. This study also examined which model was most efficient at the flow by changing the flow conditions of the inlet and outlet due to the configuration of various tank. Same material was applied to models A, B and C. As the result of flow analysis, it was shown that model B had the best flow and model C had the highest pressure applied to the flow. So, though the water tank has the same material according to the configuration of product, the velocity and pressure of flow become different. Therefore, it is thought to develop the tank good for the fluid flow due to the product configuration through this flow analysis result. On the basis of this study result, the esthetic sense can be shown as the analysis data of flow due to the configuration of fluid tank are grafted onto the real life.

ESTIMATION OF LEAK RATE THROUGH CIRCUMFERENTIAL CRACKS IN PIPES IN NUCLEAR POWER PLANTS

  • PARK, JAI HAK;CHO, YOUNG KI;KIM, SUN HYE;LEE, JIN HO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.332-339
    • /
    • 2015
  • The leak before break (LBB) concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry-Fauske flow model and modified Henry-Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

Fluidelastic instability of a tube array in two-phase cross-flow considering the effect of tube material

  • Liu, Huantong;Lai, Jiang;Sun, Lei;Li, Pengzhou;Gao, Lixia;Yu, Danping
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2026-2033
    • /
    • 2019
  • Fluidelastic instability of a tube array is a key factor of the security of a nuclear power plant. An unsteady model of the fluidelastic instability of a tube array subjected to two-phase flow was developed to analyze the fluidelastic instability of tube bundles in two-phase flow. Based on this model, a computational program was written to calculate the eigenvalue and the critical velocity of the fluidelastic instability. The unsteady model and the program were verified by comparing with the experimental results reported previously. The influences of void fraction and the tube's material properties on the critical velocity were investigated. Numerical results showed that, with increasing the void fraction of the two-phase flow, the tube array becomes more stable. The results indicate that the critical velocities of the tube array made of stainless are much higher than those of the other two tube arrays within void fraction ranging from 20% to 80%.

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소해석)

  • 황재호;고대철;민규식;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

NUMERICAL SIMULATION OF DEBRIS FLOW USING MULTIPHASE AND NON-NEWTONIAN FLUID MODEL (비선형 점성유체의 다상유동 모형을 이용한 토석류 전산해석)

  • Lee, S.;Hwnag, K.K.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.95-102
    • /
    • 2017
  • Debris flow is a composition of solid objects of various sizes, suspension and water, which occurs frequently as the results of landslide following heavy rainfall. This often causes extensive damage in the form of socio-economic losses and casualties as witnessed during the incident around Mt. Umyeon, Seoul in 2011. There have been numerous investigation to mitigate the impacts from debris flow; however, the estimation as preparedness measure has not been successful due to nonlinear and multiphase characteristics of phenomena both in material and process inherent in the debris flow. This study presents a numerical approach to simulate the debris flow using open source code of computational fluid dynamics, OpenFOAM with non-Newtonian viscosity model for three phase material modeling. In order to validate the proposed numerical method, the quantitative evaluations were made by comparisons with experimental results and qualitative analysis for the dispersion characteristics was carried for the case of debris flow in the actual incident from Mt. Umyeon.

A Study on Material Characterization of Semi-Solid Materials(II) -Determination of Flow Stress For Semi-Solid Materials Using Backward Extrusion Experiment with Model Material and Upper Bound Analysis- (반용융 재료의 물성치 평가에 관한 연구(II) -모델재료의 후방압출 실험과 상계해석을 통한 반용융 재료의 유동응력식 결정-)

  • 이주영;김낙수
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.374-383
    • /
    • 1999
  • To determine the flow stress of semi-solid materials, a new combined method has been studied by experimental and analytic technique in the current approach. Using backward extrusion experiment and its numerical analysis, the characterization scheme of semi-solid materials according to the change of initial solid volume fraction has been proposed. Because that solid volume fraction is sensitive to temperature change, it is required to precisely control the temperature setting. Model materials can guarantee the establishment of material characterization technique from the noise due to temperature change. Thus, clay mixed with bonded abrasives was used for experiment and the change of initial solid fraction was copied out through the variation of mixing ratio. Upper bound method was adapted to increase in efficiency of the calculation in numerical analysis and new kinematically admissible velocity field was employed to improve the accuracy of numerical solution. It is thought that the material characterization scheme proposed in this study can be applied to not only semi-solid materials, but also other materials that is difficult to obtain the simple stress state.

  • PDF

Flow and Cure Simulation of resin transfer molding process for composites using MoldFlow (복합재료 수지 전달 공정의 몰드플로우를 이용한 유동과 경화 시뮬레이션)

  • Jung, Jae-Sung;Hong, Ji-Seon;Kim, Sun-Kyoung
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.44-49
    • /
    • 2022
  • In this study, the simulation of the resin transfer molding process method using MoldFlow has been investigated. This work explains the thermoset material model, fabric permeability model, the flow model and the cure model. It has been shown that the simulation result can predict filling and cure performances.