• Title/Summary/Keyword: Material exergy loss

Search Result 3, Processing Time 0.017 seconds

A Study of Loss Prevention for Methanol Synthesis Process Based on Exergy Analysis (엑서지 해석에 기초한 메탄올합성공정의 손실예방책 연구)

  • Cho, Hyo-Eun;Chung, Yonsoo
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.129-137
    • /
    • 2000
  • A methanol synthesis process via reverse-water-gas-shift and methanol formation reactions has been analyzed using the notion of exergy. The analysis has been based on the simulation results with the aid of real operating data. Driving and material exergy losses have been defined and quantified, respectively. Locations and the reason of major exergy losses have been pinpointed and improvement strategies have been suggested. It had been noted that the exergy analysis can provide a sound scientific base for adopting the concept of industrial ecology and developing loss prevention schemes.

  • PDF

Suggestions for Energy Utilization Improvement of Fractionation and Hydrodealkylation Units Based on Exergy Analysis (엑서지 해석에 근거한 분별증류 및 수소첨가알킬제거 공정의 에너지 이용 개선 방안)

  • Chung, Yonsoo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • Fractionation and hydrodealkylation (HDA) units, subparts of BTX plant, were thermodynamically analyzed using the notion of exergy. Exergy values were calculated as the sum of physical and chemical exergies due to the existence of chemical reactions. The analysis was based on the simulation results with the aid of real operating data. Driving and material exergy losses were separately defined and quantified. Locations and the reason of major exergy losses were identified and improvement strategies were suggested. It was noted that the exergy analysis could provide a sound base for adopting the concept of industrial ecology and developing loss prevention schemes.

  • PDF

Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression (3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석)

  • 이근식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF