• 제목/요약/키워드: Material design parameter

검색결과 404건 처리시간 0.028초

일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정 (Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates)

  • 이계승;이억섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도 (Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment)

  • 성대용;정창균;윤석준;안동규;양동열
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.

파우더 블라스팅을 이용한 유리 가공시 실험계획법에 의한 가공면 분석 (Predictive modeling of surface roughness and material removal In powder blasting of glass by design of experiments)

  • 김권흡;김정근;한진용;성은제;박동삼;유우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.681-684
    • /
    • 2005
  • The old technique of sandblasting which has been used for paint or scale removing, deburring, and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than 100um. A large number of Investigations on the abrasive jet machining with output parameters as material removal rate, penetrate and surface finish have been carried out and reported by various authors. In this paper, we investigated the effect of surface characteristics and surface shape of the abrasive jet machined glass surface under different blasting parameter. and finally we established a model for abrasive flow machining process, and compared with experimental results.

  • PDF

특성임피던스 분석을 사용한 커넥터 성능향상 (Improvement of Connector Performance Using Analysis of Characteristic Impedance)

  • 양정규;김문정
    • 대한전자공학회논문지TC
    • /
    • 제48권9호
    • /
    • pp.47-53
    • /
    • 2011
  • 본 논문에서는 커넥터의 특성임피던스 추출, 분석 방법 및 설계 변경 방법을 제안하고 임피던스를 정합하여 신호 전달 특성을 개선한다. 3차원 FEM(Finite Element Method) 전자기장(Electro-Magnetic Field) 시뮬레이터를 이용하여 커넥터의 S-파라미터를 계산하고 반사손실 및 삽입손실을 추출한다. 커넥터의 신호 전달 특성은 반사손실이 0.9 GHz 이후부터 -20 dB 이상의 값으로 높게 나타났다. 신호 전달 특성이 낮은 원인을 파악하기 위해서 회로 해석 시뮬레이터를 이용하여 커넥터의 등가 회로 모델을 추출하고 특성임피던스를 계산하였다. 커넥터의 특성임피던스는 $90.3{\Omega}$으로 임피던스 부정합이 발생하여 신호 전달 특성이 저하되었다. 따라서 신호 전달 특성을 개선할 목적으로 임피던스를 정합하기 위해서 커넥터의 커패시턴스를 증가시켰다. 이러한 설계 방안으로 커넥터 신호선의 유효 면적을 확장하고, 커넥터의 몸체 소재로 고유전체를 사용하였다. 설계 변경된 커넥터의 특성임피던스는 $58.6{\Omega}$으로 임피던스 정합에 보다 근접하여 커넥터의 반사손실이 대략 10 dB 향상되었다. 신호선의 유효 면적 증가에 의한 반사손실 개선과 고유전체의 적용으로 전자기파의 신호선 주변 집중에 의해서 삽입손실 또한 개선되었다.

Carbon/Epoxy 복합재료의 피로수명예측에 관한 신뢰성 해석 (A Reliability Analysis on the Fatigue Life Prediction in Carbon/Epoxy Composite Material)

  • 장성수
    • 한국산업융합학회 논문집
    • /
    • 제10권3호
    • /
    • pp.143-147
    • /
    • 2007
  • In recents years, the statistical properties has become an important quantity for reliability based design of a component. The effects of the materials and test conditions for parameter estimation in residual strength degradation model are studied in carbon/epoxy laminate. It is shown that the correlation between the experimental results and the theoretical prediction on the fatigue life distribution using the life distribution convergence method is very reasonable.

  • PDF

철근콘크리트 장주의 극한저항력 (Ultimate Resisting Capacity of Slender RC Columns)

  • 곽효경;김진국
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.275-282
    • /
    • 2001
  • In this paper, nonlinear analyses of RC (Reinforced Concrete) columns are conducted, and an improved criterion to estimate the design load carrying capacity of slender RC columns is proposed. To simulate the material nonlinearty including the cracking of concrete, the layer model is adopted, and the initial stress matrix is considered for the simulation of P- effect. After correlation studies with previous numerical results to verify the efficiency of the developed numerical model, many parameter studies are followed, and a regression formula which can give more exact resisting capacity of slender RC columns is introduced on the basis of the obtained numerical results.

  • PDF

금속-고무 스프링의 유한요소 해석 (Finite Element Analysis of Metal Bonded Rubber Spring)

  • 우창수;김완두
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.474-481
    • /
    • 1998
  • Metal bonded rubber spring is used in primary suspension component of the high speed train. The aim of this study is to establish a finite element analysis technique for the metal bonded rubber spring. Some theoretical analyses were performed on the hyperelastic behavior in rubber material and test are carried out to acquire the constants in strain energy function for it. Also, finite element analysis were executed to evaluate the design parameter and behavior of deformation and stress distribution using by the commercial finite element code.

  • PDF

Design of an Integrated Inductor with Magnetic Core for Micro-Converter DC-DC Application

  • Dhahri, Yassin;Ghedira, Sami;Besbes, Kamel
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.369-374
    • /
    • 2016
  • This paper presents a design procedure of an integrated inductor with a magnetic core for power converters. This procedure considerably reduces design time and effort. The proposed design procedure is verified by the development of an inductor model dedicated to the monolithic integration of DC-DC converters for portable applications. The numerical simulation based on the FEM (finite elements method) shows that 3D modeling of the integrated inductor allows better estimation of the electrical parameters of the desired inductor. The optimization of the electrical parameter values is based on the numerical analysis of the influence of the geometric parameters on the electrical characteristics of the inductor. Using the VHDL-AMS language, implementation of the integrated inductor in a micro Buck converter demonstrate that simulation results present a very promising approach for the monolithic integration of DC-DC converters.