• 제목/요약/키워드: Material damping

검색결과 581건 처리시간 0.028초

개선된 발현악기의 루프 필터 설계 방법 (Development of Loop Filter Design of Plucked String Instruments)

  • 조상진
    • 한국음향학회지
    • /
    • 제30권2호
    • /
    • pp.107-113
    • /
    • 2011
  • 본 논문에서는 발현악기 물리적 모델링에서의 개선된 루프필터 설계 방법을 제안한다. V$\"{a}$lim$\"{a}$ki가 제안한 기존의 루프필터 설계 방법은 악기의 음이 오래 지속되는 경우에는 타당하지만, 그렇지 못한 경우에는 악기 음의 주파수 의존 감쇠를 표현하지 못하는 문제점이 있다. 이를 해결하기 위해 녹음된 악기의 단위음에 대해 감쇠구간을 선택, 배음의 개수를 최소 5개부터 20개까지 변경하며 루프필터의 파라미터를 추정하고 이를 이용한 합성음과 원 신호 간 주파수 영역에서의 신호 대 잡음비가 가장 좋은 파라미터를 선택한다. 제안한 방법의 성능 검증을 위해 몸통의 구조와 현의 재질이 각각 다른 기타, 가야금, 거문고를 대상악기로 선정하였다. 제안한 방법은 배음의 지속시간에 상관없이 악기 음의 주파수 의존 감쇠를 잘 표현하는 루프필터 파라미터를 추정해 낼 수 있었다.

Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm

  • Lee, Hyoungsuk;Song, Min-Churl;Suh, Jung-Chun;Chang, Bong-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.562-577
    • /
    • 2014
  • A reliable steady/transient hydro-elastic analysis is developed for flexible (composite) marine propeller blade design which deforms according to its environmental load (ship speed, revolution speed, wake distribution, etc.) Hydro-elastic analysis based on CFD and FEM has been widely used in the engineering field because of its accurate results however it takes large computation time to apply early propeller design stage. Therefore the analysis based on a boundary element method-Finite Element Method (BEM-FEM) Fluid-Structure Interaction (FSI) is introduced for computational efficiency and accuracy. The steady FSI analysis, and its application to reverse engineering, is designed for use regarding optimum geometry and ply stack design. A time domain two-way coupled transient FSI analysis is developed by considering the hydrodynamic damping ffects of added mass due to fluid around the propeller blade. The analysis makes possible to evaluate blade strength and also enable to do risk assessment by estimating the change in performance and the deformation depending on blade position in the ship's wake. To validate this hydro-elastic analysis methodology, published model test results of P5479 and P5475 are applied to verify the steady and the transient FSI analysis, respectively. As the results, the proposed steady and unsteady analysis methodology gives sufficient accuracy to apply flexible marine propeller design.

결명(決明)의 파종기(播種期)와 피복재료(被覆材料)가 생육(生育) 및 수량(收量)에 미치는 영향(影響) (Effects of Planting Time and Mulching Materials on Growth Characteristics and Yield in Cassia tora L.)

  • 이희덕;김창영;노태홍;이종철
    • 한국약용작물학회지
    • /
    • 제1권2호
    • /
    • pp.158-161
    • /
    • 1993
  • 본(本) 시험(試驗)은 1992년 충남(忠南) 농촌진흥원(農村振興院) 특작(特作) 시험포장(試驗圃場)에서 수행된 결명(決明) 적기파종(適基播種) 구명(究明)과 피복재료(被覆材料) 선발(選拔) 결과(結果)는 다음과 같다. 1. 대전 중부지역 결명 파종적기는 5윌 18일 파종이 가장 수량이 많았고, 6윌 하순도 10a당 273kg까지 생산이 가능하여 맥후작으로 이용할시 유리한 작물로 사료되었다. 2. 피복 재료 선발은 무피복대비 전구에서 수량성에 유의성이 인정되지 않았으나, 관행(무피복)보다 수량이 $20{\sim}53%$ 증수되었고 흑색 PE는 잡초제거 노력을 경감하여 생력화 할 수 있었다. 3. 결명은 조기파종시 결명 입고병이 조금 발생할뿐 파종기, 피복재료에 관계없이 농약사용없이 무공해 농산물이 생산 가능하였다.

  • PDF

DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성 (Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE)

  • 장붕;이광희;이철희;최종명
    • Tribology and Lubricants
    • /
    • 제31권2호
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

Derivation of response spectrum compatible non-stationary stochastic processes relying on Monte Carlo-based peak factor estimation

  • Giaralis, Agathoklis;Spanos, Pol D.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.581-609
    • /
    • 2012
  • In this paper a novel non-iterative approach is proposed to address the problem of deriving non-stationary stochastic processes which are compatible in the mean sense with a given (target) response (uniform hazard) spectrum (UHS) as commonly desired in the aseismic structural design regulated by contemporary codes of practice. This is accomplished by solving a standard over-determined minimization problem in conjunction with appropriate median peak factors. These factors are determined by a plethora of reported new Monte Carlo studies which on their own possess considerable stochastic dynamics merit. In the proposed approach, generation and treatment of samples of the processes individually on a deterministic basis is not required as is the case with the various approaches found in the literature addressing the herein considered task. The applicability and usefulness of the approach is demonstrated by furnishing extensive numerical data associated with the elastic design UHS of the current European (EC8) and the Chinese (GB 50011) aseismic code provisions. Purposely, simple and thus attractive from a practical viewpoint, uniformly modulated processes assuming either the Kanai-Tajimi (K-T) or the Clough-Penzien (C-P) spectral form are employed. The Monte Carlo studies yield damping and duration dependent median peak factor spectra, given in a polynomial form, associated with the first passage problem for UHS compatible K-T and C-P uniformly modulated stochastic processes. Hopefully, the herein derived stochastic processes and median peak factor spectra can be used to facilitate the aseismic design of structures regulated by contemporary code provisions in a Monte Carlo simulation-based or stochastic dynamics-based context of analysis.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

미세한 공혈을 통한 소음의 저감을 위한 접착 테이프 별 삽입손실 특성 (Characteristics of Insertion Loss of Adhesive Tapes to Reduce Noise through Small Opening Hole)

  • 조용성
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.232-237
    • /
    • 2024
  • 접착용 테이프는 다양한 기계적 강도를 요구하는 재료와 특유의 접착 물질을 결합시켜 편리하게 다양한 용도로 사용할 수 있다. 그 중 덕트 테이프(duct tape)는 대개 쉽게 구할 수 있고, 널리 사용되는 접착 테이프로 뽑을 수 있다. 덕트 테이프는 일반 테이프와 달리 섬유 소재를 함유하고 있는 복합재료이고 기계적 강도가 우수하다. 그 외에도 전선의 절연 용도로 사용되는 전기 절연테이프도 매우 오랜 기간 동안 사용되었고 실제로는 절연용도 외에도 전선의 기계적 강도 보강 및 댐핑 역할을 한다. 최근에는 다양한 종류의 폼 테이프(foam tape) 및 양면 테이프도 여러 용도로 널리 사용되고 있다. 하지만, 이러한 테이프의 소음 차단 효과에 대해서는 기존 자료에 명확하게 나타나 있지 않다. 본 연구에서는 미세한 공혈(hole)을 이용하여 다양한 테이프의 삽입손실을 측정하여 소음 차단 효과를 나타내었고, 그 중에서도 양면 폼 테이프의 소음 차단 효과가 가장 좋게 나타났다.