• Title/Summary/Keyword: Material analyses

Search Result 1,847, Processing Time 0.027 seconds

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Load and Structural Analyses of Composite Micro Aerial Vehicle (복합재료 초소형 비행체의 하중 및 구조해석)

  • Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.34-40
    • /
    • 2005
  • Most analyses and researches on Micro Aerial Vehicle(MAV) have focused upon propulsion, automatic control, aerodynamic configuration in low Reynolds number region, and miniaturization of telemetric parts. In the present study, a structural concept for MAV is designed by using the composite material suitable for light flight structures. In order to study the load path and stress state of the MAV, the load and structural analyses are simultaneously performed by the aeroelasticity module of MSC/NASTRAN. The stability derivatives of the MAV are obtained for three symmetric, two antisymmetric, and four unsymmetric maneuvering conditions. Although the aerodynamic theory in MSC/NASTRAN could not be proper for MAV analysis, it provides an traditional and effective tool for trim and load analyses and may be corrected with the results by more accurate theory or test. The results show that the inertial load due to payloads has a more effect on stress rather than the aerodynamic load.

Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model (비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석)

  • Kim, Yooil;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

General inflation and bifurcation analysis of rubber balloons (고무풍선의 일반화 팽창 및 분기 해석)

  • Park, Moon Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.14-24
    • /
    • 2018
  • Several typical hyper-elastic constitutive models that encompass both conventional and advanced ones were investigated for the application of instability problems, including the biaxial tension of a rubber patch and inflation of spherical or cylindrical balloons. The material models included the neo-Hookean model, Mooney-Rivlin model, Gent model, Arruda-Boyce model, Fung model, and Pucci-Saccomandi model. Analyses can be done using membrane equations with particular strain energy density functions. Among the typical strain energy density functions, Kearsley's bifurcation for the Treloar's patch occurs only with the Mooney-Rivlin model. The inflation equation is so generalized that a spherical balloon and tube balloons can be taken into account. From the analyses, the critical material parameters and limit points were identified for material models in terms of the non-dimensional pressure and inflation volume ratio. The bifurcation was then identified and found for each material model of a balloon. When the finite element method was used for the structural instability problems of rubber-like materials, some careful treatments required could be suggested. Overall, care must be taken not only with the analysis technique, but also in selecting constitutive models, particularly the instabilities.

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

Effect of Localized Recrystallization Distribution on Edgebond and Underfilm Applied Wafer-level Chip-scale Package Thermal Cycling Performance

  • Lee, Tae-Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • The correlation between crack propagation and localized recrystallization are compared in a series of cross section analyses on thermal cycled edgebond and underfilm material applied wafer level chip scale package (WLCSP) components with a baseline of no-material applied WLCSP components. The results show that the crack propagation distribution and recrystallization region correlation can explain potential degradation mechanisms and support the damage accumulation history in a more efficient way. Edgebond material applied components show a shift of damage accumulation to a more localized region, thus potentially accelerated the degradation during thermal cycling. Underfilm material applied components triggered more solder joints for a more wider distribution of damage accumulation resulting in a slightly improved thermal cycling performance compared to no-material applied components. Using an analysis on localized distribution of recrystallized areas inside the solder joint showed potential value as a new analytical approach.

Elastic Buckling Characteristics of Corrugated Culverts of Orthotropic Material (직교 이방성 재료 파형 암거의 탄성 화굴 거동 특성)

  • Kim Tae-Yeon;Han Taek-Hee;Han Keum-Ho;Kang Jin-Ook;Lee Myeoung-Sub;Kang Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.111-118
    • /
    • 2006
  • The elastic buckling strength of a corrugated culvert made of orthotropic material such as FRP was evaluated. The height and length of a corrugated wave and the thickness of the culvert were considered as factors affecting the buckling strength of the culvert. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting on the buckling strength of the used orthotropic material. Buckling strengths of various corrugated culvert models with different shapes and stiffness ratio were evaluated by FE analyses and a formula to estimate the elastic buckling strength was suggested from the regression with FE analysis results. Analysis results show that a corrugated culvert has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the corrugated culverts made of orthotropic material.

  • PDF

Factors Affecting the Characteristics of Melamine Resin Microcapsules Containing Fragrant Oils

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Jang, Hong-Gi;Kim, Sun-Ho;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.391-395
    • /
    • 2006
  • Microcapsules containing fragrant oils as a core material were prepared by in situ polymerization, using melamine-formaldehyde prepolymer as the wall material. The several parameters, such as stirring times, stirring rates, emulsifier types, emulsifier concentrations, and the viscosity of the core materials, affect the characteristics of the microcapsules. These parameters were investigated by the analyses of microcapsule size, particle size distribution, and morphology. The average microcapsule size decreased with an increase in stirring time, stirring rate, emulsifier concentration, and viscosity of the core material. It was also found that poly(vinyl alcohol) as a protective colloid could enhance the stability of the melamine-formaldehyde microcapsules.

Development and Verification of Micro-indentation Technique for Material Property Evaluation of Hyper-elastic Rubber (초탄성고무 물성평가용 미소압입시험법 개발 및 검증)

  • Lee, Hyung-Il;Lee, Jin-Haeng
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.132-137
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via [mite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions. which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress.strain curve with an average error less than 3%.

  • PDF

Design and analyses of vibration driven energy harvester for low frequency (저주파수용 진동형 에너지 하베스터의 최적 설계 및 해석)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.238-238
    • /
    • 2010
  • This paper describes the design and analysis of vibration driven energy harvester for low frequency. The maximum output powers at load were $124.2{\sim}132.2\;{\mu}W$ with magnets during 3 mm input displacement at 6 Hz resonant frequency of system.

  • PDF