• Title/Summary/Keyword: Material Utilization

Search Result 1,014, Processing Time 0.028 seconds

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

Charge/discharge Properties of Flyash as a function of Electrolyte for Lithium Rechargeable Battery (전해질 종류에 따른 Flyash의 리튬 2차전지의 충방전 특성)

  • 송희웅;김종욱;이경섭;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.362-365
    • /
    • 1999
  • The electrochemical properties of flyash obtained from combustion of fuel in fossil power plants and their performance as anode material of secondary battery have been investigated Various flysh pellets molded at various molding pressure have been used as anode lithium secondary battery. The best Performance was achieved when flyash pellet molded at pressure of 400kgf/$\textrm{cm}^2$ is utilized, that is, charge capacity of 300kgf/$\textrm{cm}^2$ and Coulombic efficiency of larger than 95% have been achieved. In addition, this battery exhibited good cycling performance. Considering these results, we predicted that utilization of the flyash as anode material and polyaniline conducting polymer as cathode material in a secondary will show capacity of 300mAh/g and Coulombic efficiency of higher than 95%.

  • PDF

Characteristics of Friction Behavior of Ceramic Friction Materials according to Surface Materials

  • Ji-Hun Park;Jung-Woo Lee;Jong-Won Kwark;Woo-Jin Han;Oneil Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.535-541
    • /
    • 2023
  • Friction material, an integral constituent of bearing supports, facilitates frictional interactions between two components. Polytetrafluoroethylene (PTFE), a commonly employed friction material in bearing supports, has assessed resultant friction equilibrium. Nonetheless, protracted utilization diminishes frictional performance as the lubricating agent is progressively depleted. Friction materials can affect the entire structural system. Hence, this study applied ceramic material as a friction material due to its high strength, low friction, and low deformation. The frictional behavior was investigated using a cyclic friction test, considering various friction materials as the primary design variables and examining their covariance in cyclic frictional movements. The results substantiated that the ceramic friction material yielded a low variance and friction coefficients in cyclic frictional movements.

Environmental Conservation and Wood Utilization (환경보호와 목재의 이용)

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.51-58
    • /
    • 1994
  • Environmental conservation has become one of the greatest concerns of all the people in the world. This issue is related to wood utilization in two major view points such as carbon dioxide emitted by the use of manufacturing energy and absorbed during the growth of trees. Wood construction materials require less manufacturing energy, which, in turn, means less carbon dioxide emission. In addition, wood keeps absorbed carbon in itself as far as it is not burnt. Therefore, wood is environmentally superior to other materials in terms of potential effects on atmospheric carbon dioxide. As examples of the environmental effect of wood utilization, the following two results were obtained: 1) If wood construction becomes popular in Korea as in Japan, more than 24% of carbon dioxide emission during construction of residential housings can be reduced: and 2) If aluminum windows are substituted by wood windows, more than 19% of carbon dioxide emission can be reduced. If the principle of "cut and plant" is kept well, wood is the best construction material for environmental protection as well as human residence.

  • PDF

A Simulation Study for Detailed Design of A-Mart Logistics Center for General Products (A-마트 상온 제품 종합물류센터 실시설계를 위한 시뮬레이션)

  • Jeon, Byoung-Hack;Jang, Seong-Young
    • IE interfaces
    • /
    • v.20 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • This paper deals with the simulation model for A-Mart logistic center design and operations. In developed simulation model, receiving docks, conveyor sorter, conveyor system, shipping docks, material handling devices and manual sorting stations are considered. Three types of cargo such as transfer center cargo, distribution center cargo and supermarket cargo are considered. The simulation model and process animation are developed using the simulation package ARENA. Among various design and operation alternatives consisting of the number of workers of receiving dock, allocation of receiving docks by cargo types, conveyor sorter velocity, the number of folk-lift, the number of manual sorting operators and overall layout, the best alternatives of each subsystem are selected by simulation analysis. The major performance measures such as sorter throughput, utilization of operators at each station, receiving docks utilization and folk-lift utilization are considered for the alternative evaluation.

Thermogravimetric Analysis of Black Mass Components from Li-ion Battery (폐이차전지 블랙 매스(Black Mass) 구성 성분의 열중량 특성 분석)

  • Kwanho Kim;Kwangsuk You;Minkyu Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.25-33
    • /
    • 2023
  • With the growth of the battery industry, a rapid increase in the production and usage of lithium-ion batteries is expected, and in line with this, much interest and effort is being paid to recycle waste batteries, including production scrap. Although much effort has been made to recycle cathode material, much attention has begun to recycle anode material to secure the supply chain of critical minerals and improve recycling rates. The proximate analysis that measures the content of coal can be used to analyze graphite in anode material, but it cannot accurately analyze due to the interaction between the components of the black mass. Therefore, in this study, thermogravimetric analysis of each component of black mass was measured as the temperature increased up to 950℃ in an oxygen atmosphere. As a result, in the case of cathode material, no change in mass was measured other than a mass reduction of about 5% due to oxidation of the binder and conductive material. In the case of anode material, except for a mass reduction of about 2% due to the binder, all mass reduction were due to the graphite(fixed carbon). In addition, metal conductors (Al, Cu) were oxidized and their mass increased as the temperature increased. Thermal analysis results of mixed samples of cathode/anode show similar results to the predictive values that can be calculated through each cathode and anode analysis results.

Utilization of a Coal-preparation Refuse as a Raw Material for Clay Brick (점토벽돌 원료로서 선탄폐석의 활용)

  • Hyun Jong-Yeong;Jeong Soo-Bok;Chae Young-Bae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.3-9
    • /
    • 2005
  • In this study, the utilization possibility of coal-preparation refuse emitted from Hwasun coal mine in Korea as a raw material for ceramic body was investigated. The firing shrinkage ratio of ceramic specimen made from the coal-preparation refuse was reduced with increasing the addition amounts of that, while the compressive strength was slightly decreased. The weight of ceramic body was also reduced because carbon contained in the coal-preparation refuse was burn by fring. The water adsorption ratio of the ceramic specimen was under 10 wt%, and the compressive strength of that was over 21 MPa at over $1,150^{\circ}C$ for 2 hr. Therefore, it was possible to make the 1st garde clay brick of KS L 4201 from the coal-preparation refuse.

Development of Bastard Indigo (Amorpha fraticosa) Utilization for Pulping (쪽제비 싸리의 팔프 이용(利用))

  • 산림청 임업시험장
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.39-41
    • /
    • 1974
  • Bastard indigo, prevailing shrub species planted in erosion control work to constitute vegetation, is proved to be usefull for pulp material other than existing usage of green manure or fuel. Pulp made from bastard indigo is good enough for filler pulp though the quality of it is not remarkably excellent. (1) Sorts of paper possible to make from this pulp. Packing paper of medium grade. (general packing paper except heavy packing) (2) Traits of this pulp as for pulp material (A) It is more preferable than annual plants in these respects, ego collection, transport and storage of pulp material, and yield, freeness and chemical consumption of pulp. (B) Annual probable production of pulp material per ha from this plant is higher than that from long-term tree species or similar to that from fast growing species. (C) Its cultivation on eroded area is welcomed and consecutive annual production of material by copice method is also proved possible.

  • PDF

Efficient recycling strategies for slurry TBM excavated soil

  • Sung-Min Nam;Joon-Shik Moon;Junyoung Ko;Hyoungseok Oh
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.603-609
    • /
    • 2024
  • In downtown subway project most of excavated soil is discarded externally, whereas in road construction excavated soil is used as filling material and management of surplus soil becomes important factor for success of the project. Excavated materials from slurry shield TBM are discharged through discharge pipe to slurry treatment plant and excavated soil mixed with bentonite are separated in separation plant by grain size. Fine material has been discarded together in filter cake without recycling. Its volume can vary according to geologic condition but statistically fine material as filter cake is about 5%~30% out of overall excavated volume. However, filter cake is non-toxic and can be recycled when mixed in the appropriate proportions with coarse aggregate. Therefore, in this study, utilization of excavated soil from a slurry shield TBM were examined and lab tests were conducted to find the proper way for mixing filter cake and aggregate to be recycled as fill material for road construction.

DEVS Simulation of Purchase Strategies for Material Stock Control System (DEVS 시뮬레이션을 이용한 자재 재고 관리의 발주 전략에 관한 연구)

  • 문성진
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.2
    • /
    • pp.17-30
    • /
    • 1995
  • One of many factors that influences the profit of an enterprise is the amount of the stock in an enterprise. When the stock amounts are optimal the economic burden of the enterprise decreases which in turn results in the optimum number of employment and spatial utilization of storages. The purpose of this study is the simulation modeling of a material stock control system using DEVS models in order to get the most suitable stock amounts. The stock within an enterprise is built by the orders from outside world. The effect on the stock by the factors such as order, delivery, and production components has been analyzed based on simulation results.

  • PDF