• 제목/요약/키워드: Material Removal Model

검색결과 141건 처리시간 0.026초

파우더 블라스팅에 의한 유리가공시 실험계획법에 의한 재료 제거량 및 표면 거칠기 예측모델에 관한 연구 (A Study on the Predictive Modeling of Material Removal and Surface Roughness in Powder Blasting of Glass by Design of Experiments)

  • 김권흡;성은제;한진용;유우식;박동삼
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.66-72
    • /
    • 2006
  • The old technique of sandblasting which has been used for paint or scale removing, deburring and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than $100{\mu}m$. In this paper, we studied on the predictive modeling of material removal and surface roughness in powder blasting of glass by design of experiments. The surface characteristics and surface shape of powder blasted glass surface were tested under different blasting parameter. Finally, we proposed a predictive model for powder blasting process, and compared with experimental results.

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

적응모델링과 유전알고리듬을 이용한 절삭공정의 최적화(II) - 절삭실험 - (Optimization of Machining Process Using an Adaptive Modeling and Genetic Algorithms(ll) - Cutting Experiment-)

  • 고태조;김희술;안병욱
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.82-91
    • /
    • 1996
  • In this study, we put our object to carry out adaptive modeling of cutting process in turning system, and to find out the optimal cutting conditions to maximize material removal rate under some constraints. We used a back-propagation neural network to model the cutting process adaptively and a genetic algorithm to find out optimal cutting conditions. The experimental results show that a back-propagation neural network could model the cutting process effciently, and optimized cutting conditions for maximizing the material removal rate were obtained through the adaptive process model and genetic algorithms. Therefore, the proposed approach can be applied to the real machining system.

  • PDF

어브레이시브 워터제트를 이용한 알루미나 세라믹스의 가공 (Abrasive Water Jet Machining of Alumina Ceramics)

  • 최기상;최기흥;김정수
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2073-2080
    • /
    • 1994
  • In this paper, a model of material removal in abrasive water jet machining of brittle material is developed, and experimentally evaluated. Abrasive water jet machining proved to yield better material removal rate than other machining techniques for hard and brittle material (alumina ceramics). It was also found that large scale fracture may develop at the exit of the jet from the material. The fracture size was predicted as a function of water jet pressure and size of the hole. Finally, the feasibility of using acoustic emission signals for in-process monitoring of the abrasive water jet machining process is investigated.

Fire Behavior of Steel Columns Encased by Damaged Spray-applied Fire Resistive Material

  • Kwak, Yoon Keun;Pessiki, Stephen;Kwon, Kihyon
    • Architectural research
    • /
    • 제10권1호
    • /
    • pp.1-11
    • /
    • 2008
  • A Steel column with damaged spray-applied fire resistive material (SFRM) may exhibit reduced structural performance due to the effects of elevated temperature during fire events. Thus, the fire load behavior of steel columns with removed or reduced SFRM needs to be examined to predict the structural damage by fire. FEM analyses were performed for the flange thinning removal models in which the SFRM was reduced as a constant strip in thickness at the top flange of the column. The temperature results for all models obtained from the heat transfer analyses were included as an initial condition in the FEM structural analyses. In this study, the results of analysis show that even small remnants of SFRM led to an effective reduction of temperature at any given fire duration, and improved significantly the axial load capacity of a column as compared to the complete removal cases of SFRM.

대기오염 가스 제거효율 향상을 위한 저온 플라즈마 응용기구 연구 (Non Thermal Plasma Applicable Mechanisms for the Improvement of Air Pollutants Removal Efficiency)

  • 김대일;김형택
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.648-652
    • /
    • 2004
  • A comparative investigation of an experimental and a simulation of chemical kinetics for NOx removal from dielectric barrier discharges is presented. Several types of dielectric barrier discharges were implemented depending upon the configuration of electrodes. The simulation was based on an approximate mathematical model for plasma cleaning of waste gas. The influence of non uniform distributions of species due to the production of primary active particles in the streamer channel was taken into account. A comparison of observed experimental to the calculated removal efficiency of NOx showed acceptable agreement.

  • PDF

기준평면과 경계상자를 이용한 NC 절삭과정의 그래픽 시뮬레이션 (Graphic Simulation of Material Removal Process Using Bounding Box and Base Plane)

  • 이철수;박광렬
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.161-174
    • /
    • 1997
  • In this paper, the techniques for graphic simulation of material removal process are described. The concepts of the bounding box and base plane are proposed. With these concepts, a real-time shaded display of a Z-map model being milled by a cutting tool following an NC path can be implemented very efficiently. The base planes make it possible to detect the visible face of Z-map model effectively. And the bounding box of tool sweep volume provides minimum area of screen to be updated. The proposed techniques are suitable for implementation in raster graphic device and need a few memories and a small amount of calculation. Proposed method is written in C and executable on MS-Windows95 and Window-NT.

  • PDF

나노스케일 워터젯 가공에 대한 분자시뮬레이션 연구 (Molecular Simulation of Nano-Scale Waterjet Machining)

  • 이상훈;김현준;김태욱
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.216-219
    • /
    • 2023
  • This study employs molecular dynamics simulations to investigate the material behavior of workpieces in waterjet machining processes. To gain fundamental insights into waterjet machining, simulations were conducted using pure water, excluding abrasive particles. The simulation model comprised thousands of water molecules interacting with a single crystal metal workpiece. Water molecule clusters were imparted with various velocities to initiate collisions with the metal workpiece. The material behavior of the metal surface was analyzed with respect to the applied velocity conditions, considering the intricate interplay between water molecules and the workpiece at the atomic scale. The results demonstrated that the machining of the metal workpiece occurred only when water molecules were endowed with velocities above a certain threshold. In cases where energy was insufficient, the metal workpiece exhibited a slight increase in surface roughness due to mild plastic deformation, without undergoing substantial material removal. When machining occurred, the ejection of material revealed a 3-fold symmetric pattern, confirming that material removal in waterjet machining of the metal workpiece is primarily driven by plastic deformation-induced material ejection. This research provides crucial insights into the mechanisms underlying waterjet machining and enhances our understanding of material behavior during the process. The findings can be valuable in optimizing waterjet machining techniques.

상대속도를 고려한 CMP 공정에서의 연마제거율 모델 (MRR model for the CMP Process Considering Relative Velocity)

  • 김기현;오수익;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.225-229
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) process becomes one of the most important semiconductor processes. But the basic mechanism of CMP still does not established. Slurry fluid dynamics that there is a slurry film between a wafer and a pad and contact mechanics that a wafer and a pad contact directly are the two main studies for CMP. This paper based on the latter one, especially on the abrasion wear model. Material Removal Rate(MRR) is calculated using the trajectory length of every point on a wafer during the process time. Both the rotational velocity of a wafer and a pad and the wafer oscillation velocity which has omitted in other studies are considered. For the purpose of the verification of our simulation, we used the experimental results of S.H.Li et al. The simulation results show that the tendency of the calculated MRR using the relative velocity is very similar to the experimental results and that the oscillation effect on MRR at a real CMP condition is lower than 1.5%, which is higher than the relative velocity effect of wafer, and that the velocity factor. not the velocity itself, should be taken into consideration in the CMP wear model.

SiO2/TiO2 혼합입자 슬러리 SiC CMP의 재료제거율 모델링 (Material Removal Rate Modeling of SiO2/TiO2 Mixed-Abrasive Slurry CMP for SiC)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.72-75
    • /
    • 2023
  • Silicon carbide (SiC) is used as a substrate material for power semiconductors; however, SiC chemical mechanical polishing (CMP) requires considerable time owing to its chemical stability and high hardness. Therefore, researchers are attempting to increase the material removal rate (MRR) of SiC CMP using various methods. Mixed-abrasive CMP (MAS CMP) is one method of increasing the material removal efficiency of CMP by mixing two or more particles. The aim of this research is to study the mathematical modeling of the MRR of MAS CMP of SiC with SiO2 and TiO2 particles. With a total particle concentration of 32 wt, using 80-nm SiO2 particles and 25-nm TiO2 particles maximizes the MRR at 8 wt of the TiO2 particle concentration. In the case of 5 nm TiO2 particles, the MRR tends to increase with an increase in TiO2 concentration. In the case of particle size 10-25 nm TiO2, as the particle concentration increases, the MRR increases to a certain level and then decreases again. TiO2 particles of 25 nm or more continuously decreased MRR as the particle concentration increased. In the model proposed in this study, the MRR of MAS CMP of SiC increases linearly with changes in pressure and relative speed, which shows the same result as the Preston's equation. These results can contribute to the future design of MAS; however, the model needs to be verified and improved in future experiments.