• Title/Summary/Keyword: Material Decomposition

Search Result 629, Processing Time 0.029 seconds

Structure and Ferroelectric properties of BCeT Thin Films (BCeT 박막의 구조 및 강유전 특성)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.245-248
    • /
    • 2003
  • Randomly oriented ferroelectric cerium-substituted $Bi_4Ti_3O_{12}$ thin films have been prepared by using metal-organic decomposition method. The layered perovskite structure was investigated using annealing for 1 h in the temperature range from $550\;{\sim}\;750\;^{\circ}C$. The structure and morphology of the films were characterized using X-ray diffraction and scanning electron microscopy The $Bi_{3.4}Ce_{0.6}Ti_3O_{12}$ (BCeT) thin films showed a perovskite phase and dense microstructure. The grain size of the BCeT films increasedwith increasing annealing temperature. The hysteresis loops of the films were well defined at temperatures above $600\;^{\circ}C$. The 200-nm-thick BCeT thin films annealed at $650\;^{\circ}C$ showed a large remanent polarization (2Pr) of 59.3 ${\mu}C/cm^2$ at an applied voltage of 10 V. The BCeT thin films showed good fatigue endurance up to $5\;{\times}\;10^9$ bipolar cycling at 5 V and 100 kHz.

  • PDF

Decomposition of gas-phase benzene by $TiO_2$ coated alumina balls (이상화티탄이 코팅된 알루미나볼에 의한 기상벤젠의 분해)

  • Lee, Nam-Hee;Jung, Sang-Chul;Cho, Duc-Ho;An, Jong-Il;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.144-148
    • /
    • 2003
  • 알루미나볼 위에 Titanium tetraisopropoxide(TTIP)를 원료로, 화학기상증착법으로 제조된 $TiO_{2}/Al_{2}O_{3}$ 볼을 이용하여 벤젠의 기상 광 분해 실험을 실시하였다. 기상분해 과정의 연속적 측정을 위하여 순환식의 반응장치를 자체 제작하였으며, PID(Photo Ionization Detector)방식의 VOCs meter를 이용하여 광조사에 의한 벤젠의 분해율을 실시간으로 측정하였다. 기상의 벤젠과 $TiO_2/Al_{2}O_{3}$ 볼의 원활한 흡착을 위해 30분간 암반응 시킨 후 광분해율을 측정한 결과 광조사에 의한 분말표면에 흡착된 VOCs의 탈착에 의한 초기 농도증가 현상이 공통적으로 측정되었으며, 흡착 면적이 작을수록 농도 증가 또한 낮게 측정되었다. 또한 최적조건을 기준으로 실시한 분해 실험 결과 60ppm이상의 고농도 영역에서는 VOCs의 분해가 비교적 느리게 진행되었지만, 60ppm이하의 저농도 영역에서는 급속한 VOCs의 분해가 측정되었다. 마찬가지로 반응 표면적이 넓을수록, 광원이 많을수록 그리고 광분해에 사용된 자외선 램프의 강도가 클수록 광반응에 의한 벤젠의 분해율이 증가하였다.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.521-528
    • /
    • 2017
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, which is used for solid rocket nozzle liner or insulator, was conducted. 1-D Finite Difference Method for the analysis of silica/phenolic during the firing of solid rocket motor was used to calculate the heat conduction considering the surface ablation and the thermal decomposition. The boundary condition at the nozzle wall took into account the convective heat transfer, which was obtained by integration equation. The numerical results of the surface ablation and char depth were compared with the results of test motor that is TPEM-10. It was found that the result of calculation is favorably agreed with the thermal response of test motor.

  • PDF

Application of Technique Discrete Wavelet Transform for Acoustic Emission Signals (음향방출신호에 대한 이산웨이블릿 변환기법의 적용)

  • 박재준;김면수;김민수;김진승;백관현;송영철;김성홍;권동진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.585-591
    • /
    • 2000
  • The wavelet transform is the most recent technique for processing signals with time-varying spectra. In this paper, the wavelet transform is utilized to improved the assessment and multi-resolution analysis of acoustic emission signals generating in partial discharge. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals in case of applied voltage 20[kv]. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We applied FIR(Finite Impulse Response)digital filter algorithm in discrete to suppression for random noise. The white noise be included high frequency component denoised as decomposition of discrete wavelet transform level-3. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of acting(the early period, the last period) .

  • PDF

Ferroelectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}/LaNiO_3$ thin films prepared by metalorganic decomposition method (MOD법으로 제작한 $Bi_{3.25}La_{0.75}Ti_3O_{12}/LaNiO_3$ 박막의 강유전 특성에 관한 연구)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Tae-Hyung;Lee, Cheol-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.352-355
    • /
    • 2003
  • [ $Bi_{3.25}La_{0.75}Ti_3O_{12}$ ] (BLT) thin films were prepared by using metal organic decomposition method onto the LaNiO3 (LNO) bottom electrode. Both the structure and morphology of the films were analyzed by x-ray diffraction (XRD) and atomic force microscope (AFM). Even at low temperatures ranging from 450 to $650^{\circ}C$, the BLT thin films were successfully deposited on LNO bottom electrode and exhibited (117) orientation. The BLT thin films annealed as low as $600^{\circ}C$ showed excellent ferroelectricity, higher remanent polarization and no significant degradation of switching charge at least up to $5{\times}10^9$ switching cycles at a frequency of 100 kHz and 5 V. For the annealing temperature of $600^{\circ}C$, the remanent polarization $P_r$ and coercive field were $23.5\;{\mu}C/cm^2$ and 120 kV/cm, respectively.

  • PDF

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF

The performance analysis of photovoltaic module accounting for solar cell degradation and series resistance (태양전지 셀의 열화와 직렬저항의 변화에 따른 태양전지 모듈의 특성 해석)

  • Park, Chi-Hong;Kang, Gi-Hwan;Waithiru, L.;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.28-29
    • /
    • 2006
  • When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.76-84
    • /
    • 2018
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, used for solid rocket nozzle liners or insulators, is conducted. A 1-dimensional finite difference method for the analysis of silica/phenolic during the firing of a solid rocket motor is used to calculate heat conduction, considering surface ablation and thermal decomposition. The boundary condition at the nozzle wall, considering the convective heat transfer, is obtained via integration equations. The numerical results of the surface ablation and char depth are compared with the results of a TPEM-10 test motor, finding that the result of calculation agrees with the thermal response of the test motor.

Study of Manufacturing Process and Properties of C/C Composites with Recycled Carbon Fiber Reinforced Plastics (리싸이클 CFRP 적용 C/C 복합재료 제조 및 특성 연구)

  • Kim, Seyoung;Han, In Sub;Bang, Hyung Joon;Kim, Soo-hyun;Seong, Young-Hoon;Lee, Seul Hee
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 2022
  • This study has a different direction from the existing technology of applying recycled carbon fiber obtained by recycling waste CFRP to CFRP again. A study was conducted to utilize recycled carbon fiber as a raw material for manufacturing a carbon/carbon (C/C) composite material comprising carbon as a matrix. First, it was attempted to recycle a commonly used epoxy resin composite material through a thermal decomposition process. By applying the newly proposed oxidation-inert atmosphere conversion technology to the pyrolysis process, the residual carbon rate of 1~2% was improved to 19%. Through this, the possibility of manufacturing C/C composite materials utilizing epoxy resin was confirmed. However, in the case of carbon obtained by the oxidation-inert atmosphere controlled pyrolysis process, the degree of oxygen bonding is high, so further improvement studies are needed. In addition, short-fiber C/C composite material specimens were prepared through the crushing and disintegrating processes after thermal decomposition of waste CFRP, and the optimum process conditions were derived through the evaluation of mechanical properties.

Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems

  • Ki, Bo-Min;Kim, Yu Mi;Jeon, Jun Min;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2199-2210
    • /
    • 2017
  • Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter, and Brevundimonas. However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium, and Caldicoprobacter. Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.