• 제목/요약/키워드: Material Constants

검색결과 569건 처리시간 0.021초

Permalloy를 이용한 이동통신주파수 대역용 박형 전파흡수체의 제조 및 특성 연구 (Absorption Properties of Thin Permalloy-Rubber Absorbers in Mobile Telecommunication Frequency Bands)

  • 김문석;민의홍;고재귀
    • 한국자기학회지
    • /
    • 제18권3호
    • /
    • pp.115-119
    • /
    • 2008
  • Permalloy를 30시간 볼밀 한 후 주사전자현미경으로 형상 및 입경을 분석하였으며, 볼밀 가공한 Permalloy의 입자들이 편편한 상을 가짐을 확인하였다. Permalloy를 실리콘 고무와 혼합하여 박형 전파흡수체를 제조하고 Network Analyzer을 이용하여 permalloy-고무 전파흡수체의 재료정수 및 전파흡수특성을 측정하였으며, 그들의 상관 관계를 비교 조사하였다. 가공한 permalloy-고무 복합재료는 높은 복소유전율 및 복소투자율을 가지며 미가공한 permalloy-고무 복합재료 보다 전파흡수 특성이 우수하였다. 또한 전파흡수체 두께에 따라서 정합주파수가 낮은 주파수 대역으로 shift 됨을 알 수 있고, 1.3 mm의 두께로 제조한 전파흡수체에서는 이동통신주파수 대역인 $1.65\;GHz{\sim}1.86\;GHz$에서 가장 우수한 전파흡수특성을 나타내었다.

Nitrile Butadiene Rubber의 비선형성에 대한 실험적 연구 (Experimental Investigation on the Non-linearity of Nitrile Butadiene Rubber)

  • 유명호;이택성;도제성;권종호
    • Elastomers and Composites
    • /
    • 제42권3호
    • /
    • pp.159-167
    • /
    • 2007
  • 산업기계에서 공기압 또는 유압용 액추에이터(actuator)가 넓이 사용되는데 액추에이터의 중요 부품으로 탄성중합체로 만들어진 시일을 사용한다. 우수한 밀봉특성을 요구하는 시일의 재료로 내유성과 내마모성이 비교적 우수한 NBR(nitrile butadiene rubber) 재료가 가장 많이 사용한다. 산업기계의 액추에이터는 적용환경에 따라 낮거나 혹은 높은 온도에서 사용되는데 여러 온도에서 NBR은 그에 따른 특성이 다르게 나타난다. 본 연구에서는 새롭게 만들어지고 있는 재료 중 공기압, 유압용 시일(Seal)재료로 사용하는 Hs70, 80, 90등 3종의 NBR을 각각 $-10^{\circ}C,\;20^{\circ}C,\;80^{\circ}C,\;100^{\circ}C$온도에서 소재의 비선형(nonlinear) 특성의 시험과 유한요소해석에 필요한 재료상수를 알아보고 각각의 온도에서 하중 반복조건에 따른 소성변형 경향을 살펴보았다.

실리콘 강판 압연시 에지크랙 발생에 관한 유한요소해석 (Finite Element Based Edge Crack Analysis of Silicon-Steel Sheet in Cold Rolling)

  • 변상민;이재현;김상록;장윤찬;나두현;이종빈;이규택;송길호;이성진
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.511-517
    • /
    • 2009
  • 본 논문에서는 냉간압연 중에 실리콘 강판의 에지부에 발생하는 크랙을 해석하는 방법을 제시하였다. 본 방법은 손상역학의 개념에 기초하여 소재의 변형 중 발생하는 손상개시와 손상진전 및 파괴의 형태로 순차적으로 해석하는 기법이다. 이를 통해 압연 중에 크랙 발생 유무와 발생 후 크랙의 진전된 길이 및 형상을 예측할 수 있다. 소재의 파괴물성치는 일반 판상시편 및 노치 판상시편의 인장실험을 통해서 도출하였다. 압연중 발생하는 에지크랙 해석결과가 얼마만큼 정확한지 평가하기 위해서 시험압연기를 통해 얻은 압연시편과 직접 형상 비교를 수행하였다. 크랙의 길이 및 방향 측면에서 본 해석기법의 예측정도가 실험에 상당부분 근접함을 알 수 있었다. 마지막으로 실리콘 강판의 실제 압연공정으로 에지크랙 해석을 수행하여 초기크랙 길이 및 압연기 출측 강판 감기 인장력에 따른 크랙 진전 거동에 대해 분석하였다.

Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites

  • Yang, Wenhu;Yi, Ran;Yang, Xu;Xu, Man;Hui, Sisi;Cao, Xiaolong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권3호
    • /
    • pp.116-120
    • /
    • 2012
  • In this paper, ZnO-Epoxy nanocomposites (NEP) were prepared and epoxy composites that contain 5 wt% micro ZnO (MEP) and deliberately not well dispersed nano ZnO (NDNEP) were also prepared for purpose of comparison. The effects of the particle size and dispersion of ZnO on dielectric properties of epoxy resin were chiefly studied. Test results showed that: at a loading of 5 wt%, the three epoxy composites seem to have no significant difference on resistivity compared to epoxy resin; Dielectric constants of all the epoxy composites are also basically the same but they are bigger compared to that of the pure epoxy resin (unfilled); Dielectric dissipation factors ($tan{\delta}$) of NDNEP is greater than that of NEP and MEP. NEP has the minimum dielectric loss factor, whereas dielectric loss factors of the three epoxy composites are larger than that of the pure epoxy resin. The decreasing order of electrical breakdown strength for the three epoxy composites and for the pure epoxy resin is as follows: NEP>MEP>NDNEP>EP. Finally, in order to explain the experimental results the aggregation interface phase was proposed. Furthermore, addition of well dispersed nano filler has proved to have a positive effect on the improvement of the dielectric properties of epoxy resin.

Sol-Gel 법에 의한$ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$ (Electrical properties of sol-gel derived $ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$ thin film)

  • 임무열;구경완;한상옥
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권2호
    • /
    • pp.134-140
    • /
    • 1997
  • PbTiO$_{3}$-PbZrO$_{3}$-Pb(Ni$_{1}$3/Nb $_{2}$3/O$_{3}$)(PZT-PNN) thin films were prepared from corresponding metal organics partially stabilized with diethanolamine by the sol-gel spin coating method. Each mol rates of PT:PZ:PNN solutions were #1(50:40:10), #2(50:30:20), #3(45:35:20) and #4(40:40:20), respectively. The spin-coated PZT-PNN films were sintered at the temperature from 500.deg. C to 600.deg. C for crystallization. The P-E hysteresis curve was drawn by Sawyer-Tower circuit with PZT-PNN film. The coercive field and the remanent polarization of #4(40:40:20 mol%) PZT-PNN film were 28.8 kV/cm and 18.3 .mu.C/cm$^{2}$, respectively. Their dielectric constants were shown between 128 and 1120, and became maximum value in MPB(40:40:20 mol%). The leakage currents of PZT-PNN films were about 9.4x 10$^{-8}$ A/cm$^{2}$, and the breakdown voltages were about 0.14 and 1.1 MV/cm. The Curie point of #3(45:35:20 mol%, sintered at 600.deg. C) film was 330.deg. C.

  • PDF

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권6호
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

Syndiotactic isoregic 폴리비닐플로라이드 결정의 Force Fields 및 Elastic Properties (Force Fields and Elastic Properties of Syndiotactic Isoregic Poly(viny1 fluoride) Crystal)

  • ;이정구;홍진후
    • 한국재료학회지
    • /
    • 제4권7호
    • /
    • pp.792-797
    • /
    • 1994
  • 6-31G $\ast$ $\ast$ basis set을 이용한 ab initio 양자역학적 방법에 의하여 2,4,6- trifluoroheptane구조를 구함으로서 syndiotactic isoregic PVF결정의 force field를 유도하였다. 또 그 결과를 PVF의 structure parameter및 elastic constant를 계산하는데 응용하였다. 그 결과 cell parameter는 각각 a(5.205$\AA$: chain axis), b(8.457 $\AA$) 및 c(4.621 $\AA$)로 나타났으며 X-ray data(5.04$\AA$, 8.57$\AA$, 및 4.95$\AA$)결과와 비교적 잘 일치함을 알 수 있었다. Defect 비존재하에서의 syndiotactic PVF결정의 Young's 모듈러스 계산값은 267Gpa로 나타났으며, polyvinylideme fluoride(277-293 GPa)및 polyethylene(264-337 GPa)결정의 경우와 비슷한 수준으로 나타났다. 또한 optimum geometry에서 얻어진 bulk modulus값은 experimental geometry 에서 얻어진 값보다 두배의 차이를 보였으며, 이것은 geometry 에 따른 elastic compliance constant(특히 $S_{33}$인자)가 크게 달라지기 때문인 것으로 나타났다.

  • PDF

N-Alkyl Pyridinium Bromide류의 계면활성에 대한 열역학적 특성 (Thermodynamic Characteris tics of Surface Activities of N-Alkyl Pyridinium Bromide)

  • 김영찬;김동식;정순옥;손병청
    • 한국응용과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.105-114
    • /
    • 1991
  • In relation to the preparation of Langmuir-Blodgett thin film, four kinds of N-alkylpyridiniurn bromide were synthesized. The values of surface tensions of these materials, measured with a Traube stalagmometer, gave the relationship between the critical micells hydrophobic radical and between CMC and temperature. Values of thermodynamic properties(${\Delta}H^0_m,\;{\Delta}S^0_m,\;{\Delta}G^0_m,$) for the formatoin of micelle were also obtained. Experiments gave the following results; at the temperature range between 40 and 60$^{\circ}C, CMC of Hexadecyl-, Octadecyl-, Eicosyl-, and Docosyl-Pyridinium Bromide were $7.64{\times}10^{-4}{\sim}9.13{\times}10^{-4},\;3.85{\times}10^{-4}{\sim}4.60{\times}10^{-4},\;2.00{\times}10^{-4}{\sim}2.39{\times}10^{-4},\;and\;1.07{\times}10^{-4}{\sim}1.28{\times}10^{-4}$ mol/l, respectively. Surface tension, ${\Gamma}_{CMC}$, of those were 33.49${\sim}$36.00, 34.78${\sim}$37.61, 35.49${\sim}$37.61 and 38.76${\sim}$55.80 dyne/cm, respectively, The relationship between CMC and the mumber of carbon atoms in the hydrophobic radical, N was expressed as follows : Log(CMC)=A-BN where A and B are constants. At the temperature range between 40 and 60$^{\circ}C$, the change of Gibbs evergy (${\Delta}G_m$) for one methylene group ($-CH_2-$) were -0.65RT, respectively, The minus values of enthalpy change (${\Delta}H_m$) suggest that the formation of micelle is exothermic. Additionally, the overall increase in the entropy change (${\Delta}S_m$) with respect to the temperature increase suggests that the formation of micelle is attained by a exothermic enthalpy directed process.

Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.59-68
    • /
    • 2020
  • In the present study, buckling analysis of sandwich composite (carbon nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two configurations (core and layers material), three laminates (combination of different angles) and two models (relative thickness of core according to peripheral layers) using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and different types of porosity distribution on critical buckling load are discussed. Using sandwich beam, it shows a considerable enhancement in the critical buckling load when compared to ordinary composite. Actually, resistance against buckling in sandwich beam is between two to four times more. It is also showed the critical buckling loads of laminate 1 and 3 are significantly larger than the results of laminate 2. When Configuration 2 is used, the critical buckling load rises about 3 percent in laminate 1 and 3 compared to the results of configuration 1. The amount of enhancement for laminate 3 is about 17 percent. It is also demonstrated that the influence of the core height (thickness) in the case of lower carbon volume fractions is ignorable. Even though, when volume fraction of fiber increases, differences grow smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Among three porosity patterns investigated, beam with the distribution of porosity Type 2 (downward parabolic) has the maximum critical buckling load. At the end, the first three modes of buckling will be demonstrated to investigate the effect of spring constants.

Investigation of the behavior of a crack between two half-planes of functionally graded materials by using the Schmidt method

  • Zhou, Zhen-Gong;Wang, Biao;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.425-440
    • /
    • 2005
  • In this paper, the behavior of a crack between two half-planes of functionally graded materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the Schmidt method. To make the analysis tractable, it is assumed that the Poisson's ratios of the mediums are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effect of the crack length and the parameters describing the functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. It is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.