• Title/Summary/Keyword: Material Constants

Search Result 569, Processing Time 0.025 seconds

Absorption Properties of Thin Permalloy-Rubber Absorbers in Mobile Telecommunication Frequency Bands (Permalloy를 이용한 이동통신주파수 대역용 박형 전파흡수체의 제조 및 특성 연구)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.115-119
    • /
    • 2008
  • The raw materials of permalloy were processed the ball-mill for 30 hours and the shape of permalloy particles was changed from sphere to flake type, which was observed using scanning electron microscope. The complex permittivity and permeability spectra and reflection loss of permalloy-rubber composite was measured using Network Analyzer in order to investigate the relationship between the microwave absorption and the material constants. The flake type permalloy-rubber composite showed high reflection loss, which was due to the high complex permittivity and permeability. Also, the matching frequency shifted toward lower frequency range with microwave absorber thickness, and the maximum reflection loss of -6.1 dB was observed in $1.65\;GHz{\sim}1.86\;GHz$ for a 1.3 mm thickness.

Experimental Investigation on the Non-linearity of Nitrile Butadiene Rubber (Nitrile Butadiene Rubber의 비선형성에 대한 실험적 연구)

  • Yoo, Myung-Ho;Lee, Taek-Sung;Do, Je-Sung;Kwon, Jong-Ho
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.159-167
    • /
    • 2007
  • Hydraulic actuators are used widely for industrial machinery. The seal made from elastomer is used as a core part of the actuator, NBR(nitrile butadiene rubber) materials with high quality of oil resistance and abrasion resistance is used widely, requiring excellent characteristic of sealing. According to applied circumstances, the actuators for industrial machinery are used under different temperature situations. In this study, three different kinds of NBR, which is Hs70, 80, 90 are determined as one of hydraulic materials. An experimental investigation is performed to confirm the non-linearity under different temperature ($-10^{\circ}C,\;20^{\circ}C,\;80^{\circ}C,\;100^{\circ}C$) situation, material constants for finite element analysis and plastic deformation in accordance with Load-unload.

Finite Element Based Edge Crack Analysis of Silicon-Steel Sheet in Cold Rolling (실리콘 강판 압연시 에지크랙 발생에 관한 유한요소해석)

  • Byon, Sang-Min;Lee, Jae-Hyun;Kim, Sang-Rok;Jang, Yun-Chan;Na, Doo-Hyun;Lee, Jong-Bin;Lee, Gyu-Taek;Song, Gil-Ho;Lee, Sung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.511-517
    • /
    • 2009
  • In this paper an finite element approach for the edge crack analysis of silicon-steel sheet during cold rolling is presented. Based on the damage mechanics, the proposed approach follows the analysis steps which are composed of damage initiation, damage evolution and fracture. Through those steps, we can find out the initiation instant of crack and resulting propagated length and shape of the crack. The material constants related to fracture is experimentally obtained by tension tests using standard sheet-type specimen and notched sheet-type specimen. To evaluate the prediction accuracy, we performed a pilot rolling test with a initially notched sheets. It is shown that the results obtained by the approach converged to the experimental one concerning about the direction and length of propagated crack. The capability of the proposed one is demonstrated through the application to the actual silicon-steel rolling mill.

Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites

  • Yang, Wenhu;Yi, Ran;Yang, Xu;Xu, Man;Hui, Sisi;Cao, Xiaolong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.116-120
    • /
    • 2012
  • In this paper, ZnO-Epoxy nanocomposites (NEP) were prepared and epoxy composites that contain 5 wt% micro ZnO (MEP) and deliberately not well dispersed nano ZnO (NDNEP) were also prepared for purpose of comparison. The effects of the particle size and dispersion of ZnO on dielectric properties of epoxy resin were chiefly studied. Test results showed that: at a loading of 5 wt%, the three epoxy composites seem to have no significant difference on resistivity compared to epoxy resin; Dielectric constants of all the epoxy composites are also basically the same but they are bigger compared to that of the pure epoxy resin (unfilled); Dielectric dissipation factors ($tan{\delta}$) of NDNEP is greater than that of NEP and MEP. NEP has the minimum dielectric loss factor, whereas dielectric loss factors of the three epoxy composites are larger than that of the pure epoxy resin. The decreasing order of electrical breakdown strength for the three epoxy composites and for the pure epoxy resin is as follows: NEP>MEP>NDNEP>EP. Finally, in order to explain the experimental results the aggregation interface phase was proposed. Furthermore, addition of well dispersed nano filler has proved to have a positive effect on the improvement of the dielectric properties of epoxy resin.

Electrical properties of sol-gel derived $ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$ thin film (Sol-Gel 법에 의한$ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$)

  • 임무열;구경완;한상옥
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.134-140
    • /
    • 1997
  • PbTiO$_{3}$-PbZrO$_{3}$-Pb(Ni$_{1}$3/Nb $_{2}$3/O$_{3}$)(PZT-PNN) thin films were prepared from corresponding metal organics partially stabilized with diethanolamine by the sol-gel spin coating method. Each mol rates of PT:PZ:PNN solutions were #1(50:40:10), #2(50:30:20), #3(45:35:20) and #4(40:40:20), respectively. The spin-coated PZT-PNN films were sintered at the temperature from 500.deg. C to 600.deg. C for crystallization. The P-E hysteresis curve was drawn by Sawyer-Tower circuit with PZT-PNN film. The coercive field and the remanent polarization of #4(40:40:20 mol%) PZT-PNN film were 28.8 kV/cm and 18.3 .mu.C/cm$^{2}$, respectively. Their dielectric constants were shown between 128 and 1120, and became maximum value in MPB(40:40:20 mol%). The leakage currents of PZT-PNN films were about 9.4x 10$^{-8}$ A/cm$^{2}$, and the breakdown voltages were about 0.14 and 1.1 MV/cm. The Curie point of #3(45:35:20 mol%, sintered at 600.deg. C) film was 330.deg. C.

  • PDF

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

Force Fields and Elastic Properties of Syndiotactic Isoregic Poly(viny1 fluoride) Crystal (Syndiotactic isoregic 폴리비닐플로라이드 결정의 Force Fields 및 Elastic Properties)

  • Geo, G;Lee, Jeong-Gu;Hong, Jin-Hu
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.792-797
    • /
    • 1994
  • Force fields of syndiotactic isoregic PVF crystal have been extracted by optimizing a structure of 2,4,6-trifluoroheptane with ab initio Quantum mechanical method with 6-31G * * basis set, and applied to calculate the structure parameters and elastic constants of the material. The cell parameters turned out to be 5.205$\AA$, of a axis(chain axis), 8.457$\AA$, of b axis and 4.621$\AA$ of c axis. These parameters are in fair agreement with those of the atactic X-ray structure(5.04$\AA$, 8.57$\AA$, and 4.95$\AA$,respectively). The young's modulus of defect free syndiotactic PVF crystal was computed to be 267 GPa comparable to those of polyvinilidene fluoride(277-293 GPa) and polyethylene(264-337 GPa) crystals. Bulk modulus value obtained at optimum geometry is more than twice greater than that obtained at experimental geometry due to large difference of elastic compliance constant (especially Sgj element) at these two different geometries.

  • PDF

Thermodynamic Characteris tics of Surface Activities of N-Alkyl Pyridinium Bromide (N-Alkyl Pyridinium Bromide류의 계면활성에 대한 열역학적 특성)

  • Kim, Yeoung-Chan;Kim, Dong-Sik;Jeong, Soon-Wook;Shon, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-114
    • /
    • 1991
  • In relation to the preparation of Langmuir-Blodgett thin film, four kinds of N-alkylpyridiniurn bromide were synthesized. The values of surface tensions of these materials, measured with a Traube stalagmometer, gave the relationship between the critical micells hydrophobic radical and between CMC and temperature. Values of thermodynamic properties(${\Delta}H^0_m,\;{\Delta}S^0_m,\;{\Delta}G^0_m,$) for the formatoin of micelle were also obtained. Experiments gave the following results; at the temperature range between 40 and 60$^{\circ}C, CMC of Hexadecyl-, Octadecyl-, Eicosyl-, and Docosyl-Pyridinium Bromide were $7.64{\times}10^{-4}{\sim}9.13{\times}10^{-4},\;3.85{\times}10^{-4}{\sim}4.60{\times}10^{-4},\;2.00{\times}10^{-4}{\sim}2.39{\times}10^{-4},\;and\;1.07{\times}10^{-4}{\sim}1.28{\times}10^{-4}$ mol/l, respectively. Surface tension, ${\Gamma}_{CMC}$, of those were 33.49${\sim}$36.00, 34.78${\sim}$37.61, 35.49${\sim}$37.61 and 38.76${\sim}$55.80 dyne/cm, respectively, The relationship between CMC and the mumber of carbon atoms in the hydrophobic radical, N was expressed as follows : Log(CMC)=A-BN where A and B are constants. At the temperature range between 40 and 60$^{\circ}C$, the change of Gibbs evergy (${\Delta}G_m$) for one methylene group ($-CH_2-$) were -0.65RT, respectively, The minus values of enthalpy change (${\Delta}H_m$) suggest that the formation of micelle is exothermic. Additionally, the overall increase in the entropy change (${\Delta}S_m$) with respect to the temperature increase suggests that the formation of micelle is attained by a exothermic enthalpy directed process.

Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • In the present study, buckling analysis of sandwich composite (carbon nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two configurations (core and layers material), three laminates (combination of different angles) and two models (relative thickness of core according to peripheral layers) using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and different types of porosity distribution on critical buckling load are discussed. Using sandwich beam, it shows a considerable enhancement in the critical buckling load when compared to ordinary composite. Actually, resistance against buckling in sandwich beam is between two to four times more. It is also showed the critical buckling loads of laminate 1 and 3 are significantly larger than the results of laminate 2. When Configuration 2 is used, the critical buckling load rises about 3 percent in laminate 1 and 3 compared to the results of configuration 1. The amount of enhancement for laminate 3 is about 17 percent. It is also demonstrated that the influence of the core height (thickness) in the case of lower carbon volume fractions is ignorable. Even though, when volume fraction of fiber increases, differences grow smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Among three porosity patterns investigated, beam with the distribution of porosity Type 2 (downward parabolic) has the maximum critical buckling load. At the end, the first three modes of buckling will be demonstrated to investigate the effect of spring constants.

Investigation of the behavior of a crack between two half-planes of functionally graded materials by using the Schmidt method

  • Zhou, Zhen-Gong;Wang, Biao;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.425-440
    • /
    • 2005
  • In this paper, the behavior of a crack between two half-planes of functionally graded materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the Schmidt method. To make the analysis tractable, it is assumed that the Poisson's ratios of the mediums are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effect of the crack length and the parameters describing the functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. It is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.