• Title/Summary/Keyword: Matching error

Search Result 757, Processing Time 0.025 seconds

$H_{\infty}$ filter for flexure deformation and lever arm effect compensation in M/S INS integration

  • Liu, Xixiang;Xu, Xiaosu;Wang, Lihui;Li, Yinyin;Liu, Yiting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.626-637
    • /
    • 2014
  • On ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a $H_{\infty}$ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of $H_{\infty}$ filter. Based on the classical "attitude plus velocity" matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with $H_{\infty}$ filter, respectively. Simulation results indicate that $H_{\infty}$ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable.

High-Performance Spatial and Temporal Error-Concealment Algorithms for Block-Based Video Coding Techniques

  • Hsu, Ching-Ting;Chen, Mei-Juan;Liao, Wen-Wei;Lo, Shen-Yi
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • A compressed video bitstream is sensitive to errors that may severely degrade the reconstructed images even when the bit error rate is small. One approach to combat the impact of such errors is the use of error concealment at the decoder without increasing the bit rate or changing the encoder. For spatial-error concealment, we propose a method featuring edge continuity and texture preservation as well as low computation to reconstruct more visually acceptable images. Aiming at temporal error concealment, we propose a two-step algorithm based on block matching principles in which the assumption of smooth and uniform motion for some adjacent blocks is adopted. As simulation results show, the proposed spatial and temporal methods provide better reconstruction quality for damaged images than other methods.

  • PDF

Study on Error Check and State Reduction of State Diagram Using Logic Programming (논리 프로그래밍을 사용한 상태도의 오류검출과 상태 축소에 관한 연구)

  • Lee, Geuk;Kim, Min-Hwan;Hwang, Hee-Yeung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.11
    • /
    • pp.487-494
    • /
    • 1986
  • This paper is concerned with the techniques of error check and reduction of state diagram using logic programming. Error check program aims to check not only syntax errors but also semantic errors. And reduction program optimizes the state diagram by finding the redundant equivalence states and removing those from the set of states. The input of both program is state diagram represented as state table form. The output of error check program is error comment. The output of reduction program is equivalence reduced state table. Both programs are implemented using prolog. Prolog has very powerful pattern matching, and its automatic back-tracking capabilities facilitate easy-to-write error check and reduction programs.

  • PDF

Automated Image Co-registration Using Pre-qualified Area Based Matching Technique (사전검수 영역기반 정합법을 활용한 영상좌표 상호등록)

  • Kim Jong-Hong;Heo Joon;Sohn Hong-Gyoo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.181-185
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea showed: (1) average RMSE error of the approach was 0.436 Pixel (2) the average number of matching points was over 38,475 (3) the average processing time was 489 seconds per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

  • PDF

A Novel Online Multi-section Weighed Fault Matching and Detecting Algorithm Based on Wide-area Information

  • Tong, Xiaoyang;Lian, Wenchao;Wang, Hongbin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2118-2126
    • /
    • 2017
  • The large-scale power system blackouts have indicated that conventional protection relays that based on local signals cannot fit for modern power grids with complicated setting or heavily loaded-flow transfer. In order to accurately detect various faulted lines and improve the fault-tolerance of wide-area protection, a novel multi-section weighed fault matching and detecting algorithm is proposed. The real protection vector (RPV) and expected section protection vectors (ESPVs) for five fault sections are constructed respectively. The function of multi-section weighed fault matching is established to calculate the section fault matching degrees between RPV and five ESPVs. Then the fault degree of protected line based on five section fault degrees can be obtained. Two fault detecting criterions are given to support the higher accuracy rate of detecting fault. With the enumerating method, the simulation tests illustrate the correctness and fault-tolerance of proposed algorithm. It can reach the target of 100% accuracy rate under 5 bits error of wide-area protections. The influence factors of fault-tolerance are analyzed, which include the choosing of wide-area protections, as well as the topological structures of power grid and fault threshold.

A Bottom-up and Top-down Based Disparity Computation

  • Kim, Jung-Gu;hong Jeong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.211-221
    • /
    • 1998
  • It is becoming apparent that stereo matching algorithms need much information from high level cognitive processes. Otherwise, conventional algorithms based on bottom-up control alone are susceptible to local minima. We introduce a system that consists of two levels. A lower level, using a usual matching method, is based upon the local neighborhood and a second level, that can integrate the partial information, is aimed at contextual matching. Conceptually, the introduction of bottom-up and top-down feedback loop to the usual matching algorithm improves the overall performance. For this purpose, we model the image attributes using a Markov random field (MRF) and thereupon derive a maximum a posteriori (MAP) estimate. The energy equation, corresponding to the estimate, efficiently represents the natural constraints such as occlusion and the partial informations from the other levels. In addition to recognition, we derive a training method that can determine the system informations from the other levels. In addition to recognition, we derive a training method that can determine the system parameters automatically. As an experiment, we test the algorithms using random dot stereograms (RDS) as well as natural scenes. It is proven that the overall recognition error is drastically reduced by the introduction of contextual matching.

  • PDF

Compare the accuracy of stereo matching using belief propagation and area-based matching (Belief Propagation를 적용한 스테레오 정합과 영역 기반 정합 알고리즘의 정확성 비교)

  • Park, Jong-Il;Kim, Dong-Han;Eum, Nak-Woong;Lee, Kwang-Yeob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.119-122
    • /
    • 2011
  • The Stereo vision using belief propagation algorithm that has been studied recently yields good performance in disparity extraction. In this paper, BP algorithm is proved theoretically to high precision for a stereo matching algorithm. We derive disparity map from stereo image by using Belief Propagation (BP) algorithm and area-based matching algorithm. Two algorithms are compared using stereo images provided by Middlebury web site. Disparity map error rate decreased from 52.3% to 2.3%.

  • PDF

Stereo matching for large-scale high-resolution satellite images using new tiling technique

  • Hong, An Nguyen;Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.517-524
    • /
    • 2013
  • Stereo matching has been grabbing the attention of researchers because it plays an important role in computer vision, remote sensing and photogrammetry. Although most methods perform well with small size images, experiments applying them to large-scale data sets under uncontrolled conditions are still lacking. In this paper, we present an empirical study on stereo matching for large-scale high-resolution satellite images. A new method is studied to solve the problem of huge size and memory requirement when dealing with large-scale high resolution satellite images. Integrating the tiling technique with the well-known dynamic programming and coarse-to-fine pyramid scheme as well as using memory wisely, the suggested method can be utilized for huge stereo satellite images. Analyzing 350 points from an image of size of 8192 x 8192, disparity results attain an acceptable accuracy with RMS error of 0.5459. Taking the trade-off between computational aspect and accuracy, our method gives an efficient stereo matching for huge satellite image files.

Fast Stereo matching based on Plane-converging Belief Propagation using GPU (Plane-converging Belief Propagation을 이용한 고속 스테레오매칭)

  • Jung, Young-Han;Park, Eun-Soo;Kim, Hak-Il;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.88-95
    • /
    • 2011
  • Stereo matching is the research area that regarding the estimation of the distance between objects and camera using different view points and it still needs lot of improvements in aspects of speed and accuracy. This paper presents a fast stereo matching algorithm based on plane-converging belief propagation that uses message passing convergence in hierarchical belief propagation. Also, stereo matching technique is developed using GPU and it is available for real-time applications. The error rate of proposed Plane-converging Belief Propagation algorithm is similar to the conventional Hierarchical Belief Propagation algorithm, while speed-up factor reaches 2.7 times.

Adaptive Equalization using PDP Matching Algorithms for Underwater Communication Channels with Impulsive Noise (충격성 잡음이 있는 수중 통신 채널의 적응 등화를 위한 확률밀도함수 정합 알고리듬)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1210-1215
    • /
    • 2011
  • In this paper, a supervised adaptive equalization algorithm based on probability density function (PDF) matching method is introduced and its decision-feedback version is proposed for underwater communication channels with strong impulsive noise and severe multipath characteristics. The conventional least mean square (LMS) algorithm based on mean squared error (MSE) criterion has shown to be incapable of coping with impulsive noise and multipath effects commonly shown in underwater communications. The linear PDF matching algorithm, which shows immunity to impulsive noise, however, has revealed to yield unsatisfying performance under severe multipath environments with impulsive noise. On the other hand, the proposed nonlinear PDF matching algorithm with decision feedback proves in the simulation to possess superior robustness against impulsive noise and multipath characteristics of underwater communication channels.