다중 시기에 수집된 고해상도 위성영상은 효과적인 도심지 분석과 모니터링을 위한 필수적인 자료이다. 그러나 같은 지역에 대해 다른 센서에서 수집된 영상은 물론, 동일 센서 영상이라 하더라도 두 영상간의 기하학적 위치정보가 서로 일치하지 않는 문제가 존재한다. 따라서 다중 영상의 효과적인 활용을 위해서는 영상 정합을 위해 매칭 포인트를 추출하는 일이 필수적이다. 그러나 도심지의 경우 건물, 교량, 나무, 기타 인공 구조물 등의 영향으로 넓은 영역에 그림자가 분포하며 그림자의 방향과 강도는 영상 수집 시기에 따라 달라지기 때문에 정확한 매칭 포인트를 추출하는데 어려움이 있다. 본 연구에서는 대표적인 매칭점 추출 기법인 SIFT(Scale-Invariant Feature Transform) 기법과 자동 그림자 추출 기법을 적용하여 도심지역의 그림자가 영상 정합에 미치는 영향을 분석하였다. 영상 분할을 통해 생성된 세그먼트의 분광 및 공간인자를 이용하여 그림자 객체를 추출하였으며 이 때 건물 버퍼 영역을 그림자의 인접정보로서 활용하였다. SIFT 기법을 통해 추출된 매칭점이 그림자에 위치하는 경우 이를 제거하고 영상 정합을 수행하였다. 최종적으로 고해상도 위성영상의 정합에 대한 그림자의 영향을 분석하기 위해 추출된 매칭점과 정합 결과의 정확도를 정량적, 시각적으로 평가하였다.
이 연구는 수치사진측량의 기본과정 중의 하나인 입체영상 표정에서 관계영상정합 (relational matching)을 이용한 초기 근사값 결정에 관한 연구를 목적으로 한다. 수치입체영상에 대한 상호표정(relative orientation)을 자동화하기 위한 연구가 수치사진측량(Digital Photogrammetry) 및 컴퓨터 비젼(Computer Vision) 분야에서 많이 이루어져 왔다. 그러나 현재 까지의 자동화된 상호표정에 있어서는 초기 근사값 산정에 의한 문제가 제약조건이 되어 왔으므 로, 보다 일반적인 적용을 목적으로 관계영상정합이 제안되고 이에 대해 연구가 시작되었다. 이 연구에서는 특수한 관계설정(relational description)을 사용하여, 초기 근사값을 결정하는 보다 유연한 방법이 제시되고 적용되었으며, Cost 함수를 평가함수(evaluation fuction)로 적용하였다. 본 연구에서 제시된 관계정합방법에 일부로서 매칭오류(mismatch) 탐색과정을 부가하였다. 또 한, 반복적인 형태, 파단선, 사각지역 등이 다수 포함되어 있는 도심지의 영상에 대해 적용하므르 서 본 연구에서 제시된 관계영상정합이 실제 적용가능하다는 것을 입증하였다. 영상정합의 분야에서의 관계영상정합에 대한 이 연구는 기존의 영상정합법에 대한 장단점을 도 출하였으며, 수치사진측량 분야에서의 관계영상정합의 응용과 개발에 대한 향후의 연구방향을 제 시하였다.
This paper introduces a correlation-based surface matching algorithm that can be used to reconstruct the surface topography of an object that is scanned from multiple overlapping regions by an AFM. The image matching technique is applied to two neighboring images intentionally overlapped with each other. To account for the inaccuracy of the coarse stage implemented in AFM, all the six axes including the rotational degrees of freedom are successively matched to maximize the correlation coefficient. The results show that the proposed 6-axes image matching method is useful for expanding the measurement range of AFM.
최근 전 지구적, 혹은 대규모 지역의 분석 및 모니터링을 위한 위성영상의 사용이 늘어나고 있으며 이를 처리하기 위해 빠르고 편리한 '영상좌표 상호등록'방법이 요구되고 있다. 이러한 '영상좌표 상호등록'은 위성의 센서모델 및 천체력 자료를 이용하는 엄밀 모델식을 이용하는 방법과 기 존재하는 기준 영상(Reference image)을 사용하거나 혹은 수치지도를 사용하는 경험적 방법의 두 가지로 분류할 수 있다. '영상좌표 상호등록'의 효율성을 높이기 위해서 저자는 '사전검수 영역기반정합법'(Pre-qualified area matching)을 사용하였다. 이는 Canny 연산자를 이용한 경계추출법, 교차상관계수를 사용한 영역기반정합법(Area based matching), t-분포를 이용하여 95%의 신뢰구간 내에서 과대오차 소거법을 적용한 방법이다. 이러한 사전검수(Pre-qualification) 과정을 통해 연산시간을 현저히 단축시켰고, '영상좌표 상호등록'의 정확도 역시 향상됨을 알 수 있었다. 제안한 알고리즘을 사용하여 프로그램을 작성하고, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.435 영상소, 정합점은 평균 25,573개로 나타났다. 연산 시간은 3.0GHz 1Gb RAM 사양의 컴퓨터에서 평균 약 4.2분으로 나타났다.
Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea showed: (1) average RMSE error of the approach was 0.436 Pixel (2) the average number of matching points was over 38,475 (3) the average processing time was 489 seconds per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.
지형 참조 항법 기술 중 하나인 TERCOM은 순항미사일에 장착되어 있는 시스템으로 현재까지도 지속적으로 연구되고 있는 기술이다. 본 논문에서는 영역기반 정합 기법과 확장형 칼만필터를 이용하여 TERCOM에 기반한 지형 참조 항법을 시뮬레이션을 통해 분석하였다. 영역기반 정합의 유사성 분석에는 평균제곱오차 알고리즘과 상호상관정합 알고리즘을 적용하였다. 기압 고도계와 레이더 고도계, SRTM DTM을 탑재한 항체가 시속 1000km로 545초 간 장방형 궤적으로 비행하도록 시뮬레이션 하였으며, 그 결과 평균제품오차 기반 알고리즘의 거리 오차의 표준연차는 99.6m 상호상판정합 기반 알고리즘은 34.3m로 상호상관정합 기반 알고리즘이 상대적으로 지형에 덜 민감하고 두 알고리즘 모두 지형의 기복 정도에 따라 항법 정밀도의 편차가 큰 것으로 나타났다. 따라서 완만한 지형에도 민감한 알고리즘과 관성항법 적분오차 증가에 따라 적절한 탐색영역의 크기 결정, 비행환경에 따라 요구되는 최적의 지형 데이터베이스의 해상도 결정 등에 대한 연구가 수행되어야 할 것으로 판단된다.
The purpose of this paper is to improve the matching accuracy in identifying corresponding points in the area-based matching for the processing of stereo vision. For the selection of window size, a new method is proposed based on frequency domain analysis. The effectiveness of the proposed method is confirmed through a series of experiments. To overcome disproportionate distortion in stereo image pair, a new matching method using the warped window is also proposed. In the algorithm, the window is warped according to imaging geometry. Experiments on a synthetic image show that the matching accuracy is improved by 14.1% and 4.2% over the rectangular window method and image warping method each.
In this paper we proposed multi-directional matching windows combined by multi-dimensional feature vector matching, which uses not only intensity values but also multiple feature values, such as variance, first and second derivative of pixels. Multi-dimensional feature vector matching has the advantage of compensating the drawbacks of area-based stereo matching using one feature value, such as intensity. We define matching cost of a pixel by the minimum value among eight multi-dimensional feature vector distances of the pixels expanded in eight directions having the interval of 45 degrees. As best stereo matches, we determine the two points with the minimum matching cost within the disparity range. In the experiment we used aerial imagery and IKONOS satellite imagery and obtained more accurate matching results than that of conventional matching method.
An active research area in computer vision, stereo matching is aimed at obtaining three-dimensional (3D) information from a stereo image pair captured by a stereo camera. To extract accurate 3D information, a number of studies have examined stereo matching algorithms that employ adaptive support weight. Among them, the adaptive census transform (ACT) algorithm has yielded a relatively strong matching capability. The drawbacks of the ACT, however, are that it produces low matching accuracy at the border of an object and is vulnerable to noise. To mitigate these drawbacks, this paper proposes and analyzes the features of an improved stereo matching algorithm that not only enhances matching accuracy but also is also robust to noise. The proposed algorithm, based on the ACT, adopts the truncated absolute difference and the multiple sparse windows method. The experimental results show that compared to the ACT, the proposed algorithm reduces the average error rate of depth maps on Middlebury dataset images by as much as 2% and that is has a strong robustness to noise.
Stereo vision is useful to obtain three dimensional depth information from two images taken from different view points. In this paper, we reduce searching area for correspondence by using the intra-scanline constraint, and utilize the inter-scanline constraint and the property of disparity continuity among the neighboring pixels for relaxation. Nodes with 3-D stucture are located on the axes of two views, and have matching possibility of correspondent pixels of two images. A matching is accepted if a node at the intersection of the disparity axes has the greatest matching possibility. Otherwise, the matching possibility of the node is updated by relaxation with the cooperation of neighboring nodes. Further relaxation with competition of two views is applied to a matching possibility of randomly selected node. The consensus of two views increases the confidence of matching, and removes a blurring phenomenon on the discontinuity of object. This approach has been tested with various types of image such as random dot stereogram and aerial image, and the experimental results show good matching performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.