• Title/Summary/Keyword: Matched motion

Search Result 135, Processing Time 0.029 seconds

The evolution of electrocardiographic changes in patients with Duchenne muscular dystrophies

  • Yoo, Woo Hyun;Cho, Min-Jung;Chun, Peter;Kim, Kwang Hun;Lee, Je Sang;Shin, Yong Beom
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.6
    • /
    • pp.196-201
    • /
    • 2017
  • Purpose: Myocardial dysfunction and dysrhythmias are inevitable consequences of Duchenne muscular dystrophy. We aimed to evaluate specific trends of electrocardiographic changes that reflect the progress of cardiomyopathy in patients with Duchenne muscular dystrophy. Methods: Fifty electrocardiograms (ECGs) of 30 patients (ages 1 to 27 years) who had not been prescribed medications for heart failure treatment at the time of examination were retrospectively analyzed and compared with 116 ECGs of age-matched healthy 116 controls. Heart rate, leads with fragmented QRS (fQRS), corrected QT, Tpeak-to-Tend, and Tpeak-to-Tend/QT were analyzed. Results: The patients with Duchenne muscular dystrophy failed to show a normal age-related decline in heart rate but showed an increasing trend in the prevalence of fQRS, corrected QT, corrected Tpeakto-Tend, and Tpeak-to-Tend/QT over time. In the ${\leq}10-year-old$ patient group, a significant difference was found only in the prevalence of fQRS between the patients and the controls. The prevalence of fQRS, heart rate, Tpeak-to-Tend/QT, and corrected Tpeak-to-Tend demonstrated significant differences between the patients and the controls in the middle age group (11 to 15 years old). All the indexes were statistically significantly different in the ${\geq}16-year-old$ patient group. Conclusion: The prevalence of lead with fQRS representing regional wall motion abnormalities was higher in the young patients than in the young healthy controls, and this might be one of the first signs of myocardial change in the patients. Markers of depolarization and repolarization abnormalities were gradually prominent in the patients aged >10 years. Further studies are needed to confirm these findings.

Codebook-Based Foreground-Background Segmentation with Background Model Updating (배경 모델 갱신을 통한 코드북 기반의 전배경 분할)

  • Jung, Jae-young
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.375-381
    • /
    • 2016
  • Recently, a foreground-background segmentation using codebook model has been researched actively. The codebook is created one for each pixel in the image. The codewords are vector-quantized representative values of same positional training samples from the input image sequences. The training is necessary for a long time in the most of codebook-based algorithms. In this paper, the initial codebook model is generated simply using median operation with several image frames. The initial codebook is updated to adapt the dynamic changes of backgrounds based on the frequencies of codewords that matched to input pixel during the detection process. We implemented the proposed algorithm in the environment of visual c++ with opencv 3.0, and tested to some of the public video sequences from PETS2009. The test sequences contain the various scenarios including quasi-periodic motion images, loitering objects in the local area for a short time, etc. The experimental results show that the proposed algorithm has good performance compared to the GMM algorithm and standard codebook algorithm.

Realistic 3D Scene Reconstruction from an Image Sequence (연속적인 이미지를 이용한 3차원 장면의 사실적인 복원)

  • Jun, Hee-Sung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.183-188
    • /
    • 2010
  • A factorization-based 3D reconstruction system is realized to recover 3D scene from an image sequence. The image sequence is captured from uncalibrated perspective camera from several views. Many matched feature points over all images are obtained by feature tracking method. Then, these data are supplied to the 3D reconstruction module to obtain the projective reconstruction. Projective reconstruction is converted to Euclidean reconstruction by enforcing several metric constraints. After many triangular meshes are obtained, realistic reconstruction of 3D models are finished by texture mapping. The developed system is implemented in C++, and Qt library is used to implement the system user interface. OpenGL graphics library is used to realize the texture mapping routine and the model visualization program. Experimental results using synthetic and real image data are included to demonstrate the effectiveness of the developed system.

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

In-House Developed Surface-Guided Repositioning and Monitoring System to Complement In-Room Patient Positioning System for Spine Radiosurgery

  • Kim, Kwang Hyeon;Lee, Haenghwa;Sohn, Moon-Jun;Mun, Chi-Woong
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.40-49
    • /
    • 2021
  • Purpose: This study aimed to develop a surface-guided radiosurgery system customized for a neurosurgery clinic that could be used as an auxiliary system for improving the accuracy, monitoring the movements of patients while performing hypofractionated radiosurgery, and minimizing the geometric misses. Methods: RGB-D cameras were installed in the treatment room and a monitoring system was constructed to perform a three-dimensional (3D) scan of the body surface of the patient and to express it as a point cloud. This could be used to confirm the exact position of the body of the patient and monitor their movements during radiosurgery. The image from the system was matched with the computed tomography (CT) image, and the positional accuracy was compared and analyzed in relation to the existing system to evaluate the accuracy of the setup. Results: The user interface was configured to register the patient and display the setup image to position the setup location by matching the 3D points on the body of the patient with the CT image. The error rate for the position difference was within 1-mm distance (min, -0.21 mm; max, 0.63 mm). Compared with the existing system, the differences were found to be as follows: x=0.08 mm, y=0.13 mm, and z=0.26 mm. Conclusions: We developed a surface-guided repositioning and monitoring system that can be customized and applied in a radiation surgery environment with an existing linear accelerator. It was confirmed that this system could be easily applied for accurate patient repositioning and inter-treatment motion monitoring.

Airspeed Estimation Through Integration of ADS-B, Wind, and Topology Data (ADS-B, 기상, 지형 데이터의 통합을 통한 대기속도 추정)

  • Kim, Hyo-Jung;Park, Bae-Seon;Ryoo, Chang-Kyung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • To analyze the motion of aircraft through computing the dynamics equations, true airspeed is essential for obtaining aerodynamic loads. Although the airspeed is measured by on-board instruments such as pitot tubes, measurement data are difficult to obtain for commercial flights because they include sensitive data about the airline operations. One of the commonly available trajectory data, Automatic Dependent Surveillance-Broadcast data, provide aircraft's speed in the form of ground speed. The ground speed is a vector sum of the local wind velocity and the true airspeed. This paper present a method to estimate true airspeed by combining the trajectory, meteorological, and topology data available to the public. To integrate each data, we first matched the coordinate system and then unified the altitude reference to the mean sea level. We calculated the wind vector for all trajectory points by interpolating from the lower resolution grid of the meteorological data. Finally, we calculate the true airspeed from the ground speed and the wind vector. These processes were applied to several sample trajectories with corresponding meteorological data and the topology data, and the estimated true airspeeds are presented.

M-mode Ultrasound Assessment of Diaphragmatic Excursions in Chronic Obstructive Pulmonary Disease : Relation to Pulmonary Function Test and Mouth Pressure (만성폐쇄성 폐질환 환자에서 M-mode 초음파로 측정한 횡격막 운동)

  • Lim, Sung-Chul;Jang, Il-Gweon;Park, Hyeong-Kwan;Hwang, Jun-Hwa;Kang, Yu-Ho;Kim, Young-Chul;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.736-745
    • /
    • 1998
  • Background: Respiratory muscle interaction is further profoundly affected by a number of pathologic conditions. Hyperinflation may be particularly severe in chronic obstructive pulmonary disease(COPD) patients, in whom the functional residual capacity(FRC) often exceeds predicted total lung capacity(TLC). Hyperinflation reduces the diaphragmatic effectiveness as a pressure generator and reduces diaphragmatic contribution to chest wall motion. Ultrasonography has recently been shown to be a sensitive and reproducible method of assessing diaphragmatic excursion. This study was performed to evaluate how differences of diaphragmatic excursion measured by ultrasonography associate with normal subjects and COPD patients. Methods: We measured diaphragmatic excursions with ultrasonography on 28 healthy subjects(l6 medical students, 12 age-matched control) and 17 COPD patients. Ultrasonographic measurements were performed during tidal breathing and maximal respiratory efforts approximating vital capacity breathing using Aloka KEC-620 with 3.5 MHz transducer. Measurements were taken in the supine posture. The ultrasonographic probe was positioned transversely in the midclavicular line below the right subcostal margin. After detecting the right hemidiaphragm in the B-mode the ultrasound beam was then positioned so that it was approximately parallel to the movement of middle or posterior third of right diaphragm. Recordings in the M-mode at this position were made throughout the test. Measurements of diaphragmatic excursion on M-mode tracing were calculated by the average gap in 3 times-respiration cycle. Pulmonary function test(SensorMedics 2800), maximal inspiratory(PImax) and expiratory mouth pressure(PEmax, Vitalopower KH-101, Chest) were measured in the seated posture. Results: During the tidal breathing, diaphragmatic excursions were recorded $1.5{\pm}0.5cm$, $1.7{\pm}0.5cm$ and $1.5{\pm}0.6cm$ in medical students, age-matched control group and COPD patients, respectively. Diaphragm excursions during maximal respiratory efforts were significantly decreased in COPD patients ($3.7{\pm}1.3cm$) when compared with medical students, age-matched control group($6.7{\pm}1.3cm$, $5.8{\pm}1.2cm$, p< 0.05}. During maximal respiratory efforts in control subjects, diaphragm excursions were correlated with $FEV_1$, FEVl/FVC, PEF, PIF, and height. In COPD patients, diaphragm excursions during maximal respiratory efforts were correlated with PEmax(maximal expiratory pressure), age, and %FVC. In multiple regression analysis, the combination of PEmax and age was an independent marker of diaphragm excursions during maximal respiratory efforts with COPD patients. Conclusion: COPD subjects had smaller diaphragmatic excursions during maximal respiratory efforts than control subjects. During maximal respiratory efforts in COPD patients, diaphragm excursions were well correlated with PEmax. These results suggest that diaphragm excursions during maximal respiratory efforts with COPD patients may be valuable at predicting the pulmonary function.

  • PDF

Clinical Results of Surgical Treatment with Minimally Invasive Percutaneous Plate Osteosynthesis for Displaced Intra-articular Fractures of Calcaneus (최소침습적 금속판 내고정술을 이용한 전위된 관절 내 종골 골절의 임상적 치료결과)

  • Suh, Jae Wan;Yang, Jong Heon;Park, Hyun-Woo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.24 no.2
    • /
    • pp.87-93
    • /
    • 2020
  • Purpose: This study evaluated the clinical results of surgical treatment with minimally invasive plate osteosynthesis for treating displaced intra-articular fractures of the calcaneus in comparison with conventional lateral extensile approach plate osteosynthesis. Materials and Methods: Of 79 cases of Sanders type II or III calcaneus fractures, 15 cases treated with the minimally invasive calcaneal plate (group M) and 64 cases treated with lateral extensile approach calcaneal plate (group E) were identified. After successful propensity score matching considering age, sex, diabetes mellitus history, and Sanders type (1:3 ratio), 15 cases (group M) and 45 cases (group E) were matched and the demographic, radiologic, and clinical outcomes were compared between the two groups. Results: The median time of surgery from injury was 2.0 days in group M and 6.0 days in group E (p=0.014). At the six months follow-up, group M showed results comparable with those of group E in radiographic outcomes. In the clinical outcomes, group M showed better postoperative American Orthopaedic Foot and Ankle Society (AOFAS) and visual analogue scale (VAS) scores than did group E (p=0.001, p=0.008). A greater range of subtalar motion was achieved at the six months follow-up in group M (inversion 20.0° vs. 10.0°, p=0.002; eversion 10.0° vs. 5.0°, p=0.025). Although there were no significant differences in complications between the two groups (1 [6.7%] vs. 7 [15.6%], group M vs. group E; p=0.661), there was only one sural nerve injury and no wound dehiscence and deep infection in group M. Conclusion: Minimally invasive plate osteosynthesis showed superior clinical outcomes compared with that of the conventional lateral extensile approach plate osteosynthesis in Sanders type II or III calcaneus fractures. We suggest applying minimally invasive plate osteosynthesis in Sanders type II or III calcaneus fractures.

Dynamic Instability and Multi-step Taylor Series Analysis for Space Truss System under Step Excitation (스텝 하중을 받는 공간 트러스 시스템의 멀티스텝 테일러 급수 해석과 동적 불안정)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.289-299
    • /
    • 2012
  • The goal of this paper is to apply the multi-step Taylor method to a space truss, a non-linear discrete dynamic system, and analyze the non-linear dynamic response and unstable behavior of the structures. The accurate solution based on an analytical approach is needed to deal with the inverse problem, or the dynamic instability of a space truss, because the governing equation has geometrical non-linearity. Therefore, the governing motion equations of the space truss were formulated by considering non-linearity, where an accurate analytical solution could be obtained using the Taylor method. To verify the accuracy of the applied method, an SDOF model was adopted, and the analysis using the Taylor method was compared with the result of the 4th order Runge-Kutta method. Moreover, the dynamic instability and buckling characteristics of the adopted model under step excitation was investigated. The result of the comparison between the two methods of analysis was well matched, and the investigation shows that the dynamic response and the attractors in the phase space can also delineate dynamic snapping under step excitation, and damping affects the displacement of the truss. The analysis shows that dynamic buckling occurs at approximately 77% and 83% of the static buckling in the undamped and damped systems, respectively.

A Quantitative Method for the Assessment of Myocardial Function using the Polar Analysis of Tc-99m-MIBI Myocardial SPECT (Tc-99m-MIBI 심근 SPECT 극성지도 분석에 의한 심근 기능의 정량적 평가)

  • Kwark, Cheol-Eun;Lee, Dong-Soo;Yeo, Jung-Suk;Lee, Kyung-Han;Chung, June-Key;Lee, Myung-Chul;Seo, Joung-Don;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.2
    • /
    • pp.172-176
    • /
    • 1994
  • As the Tc-99m-MIBI myocardial SPECT demonstrated wide application in the diagnosis of myocardial function, the quantitative and severity-dependent information is currently re quired. In this study, we proposed a computerized method for scoring the fixed defects in terms of extent-weighted severity and for identifying the reversibility in ischemic regions. At the first stage of this method, the transverse slices were reconstructed with 0.4 Nyquist freq. and order 5 Butterworth filter. From the oblique/sagittal slices, maximal count per pixel circumferential profiles were extracted for each sector, and then stress/redist. polar maps were normalized and plotted. For reversibility, the stress polar map was subtracted from the de-layed image and positive-valued pixels were categorized into three grades. The extent-weight-ed severity scores were calculated using the assigned grades and their number of pixels. This procedure was done automatically and the reversibility and severity scores were produced for each of the coronary territories (LAD, RCA, LCX) or any combination of these. Clinical ap-plication has shown that the changes In reversibility scores after PTCA were correlated linearly with the pre PTCA scores(r>0.8) in postinfarct cases as well as in angina, and severity scores of persistent defects in stress/rest SPECT study matched to the regional ejection fraction and visual analysis of regional wall motion of gated blood pool scan(r>0.6). We conclude that the computerized severity scoring method for the analysis of myocardial SPECT could be useful in the assessment of the myocardial ischemia and fixed defect.

  • PDF