• Title/Summary/Keyword: Master Control and Reporting Center(MCRC)

Search Result 2, Processing Time 0.018 seconds

QPSK Modem Design of Satellite Air-defence Warning System (위성 전군방공경보체계 QPSK 모뎀 설계)

  • Kim, Younghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Satellite Air-defence Warning System receives the aircraft/ballistic track information and air defense control command obtained from Master Control & Reporting Center (MCRC) and Air Missile Defence Cell (AMD Cell) Systems. It consists of terminal and control system to propagate track information and air defense control command control via the military satellite communications. In this paper, there were described track information, air defense control command, the frame structure of modem to transmit a voice information and modulation/demodulator design, network synchronization methods via the satellite network.

QoS Support in the Air Defense Alternative System (방공작전 예비체계의 QoS 지원)

  • Sim, Dong-Sub;Lee, Young-Ran;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.903-909
    • /
    • 2010
  • ADAS is the air defense control system performing air surveillance and identification of ROK and near air. This system is self-developed by Air Force, currently operated successfully as the alternative system of MCRC. ADAS processes converting and combining transferred the real time radar data detected by radars. additionally, it displays significant radar data as producing in tracks. Then, it uses the message queue for IPC(Inter Process Communication). the various tactical data processed in the server is ultimately send to the network management process through the message queue for transmitting to the weapon director console. the weapon director receives this transmitted tactical data through the console to execute air defense operations. However, there is a problem that data packet is delayed or lost since the weapon Director does not receive as the amount of tactical data from the server overflowed with air tracks and missions increased. This paper improved the algorism to display and transmit the various tactical data processed from ADAS server to numbers of the weapon director console in the real time without any delay or lost. Improved the algorism, established at exercise, the development server in the real operation network and the weapon director console, is proved by comparing the number of sending tactical data packets in the server and receiving packets in the weapon director.