• Title/Summary/Keyword: Massive Crowd Simulation

Search Result 3, Processing Time 0.018 seconds

Large-Scale Realtime Crowd Simulation Using Image-Based Affordance and Navigation Potential Fields (이미지 기반의 유도장과 항해장을 활용한 실시간 대규모 군중 시뮬레이션)

  • Ok, Soo-Yol
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1104-1114
    • /
    • 2014
  • In large-scale crowd simulations, it is very important for the decision-making system of manipulating interactive behaviors to minimize the computational cost for controlling realistic behaviors such as collision avoidance. In this paper, we propose a large-scale realtime crowd simulation method using the affordance and navigation potential fields such as attractive and repulsive forces of electromagnetic fields. In particular, the model that we propose locally handles the realistic interactions between agents, and thus radically reduces the cost of expensive computation on interactions which has been the most problematic in crowd simulation. Our method is widely applicable to the expression and analysis of various crowd behaviors that are needed in behavior control in computer games, crowd scenes in movies, emergent behaviors of evacuation, etc.

Detecting Collisions in Graph-Driven Motion Synthesis for Crowd Simulation (군중 시뮬레이션을 위한 그래프기반 모션합성에서의 충돌감지)

  • Sung, Man-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.44-52
    • /
    • 2008
  • In this paper we consider detecting collisions between characters whose motion is specified by motion capture data. Since we are targeting on massive crowd simulation, we only consider rough collisions, modeling the characters as a disk in the floor plane. To provide efficient collision detection, we introduce a hierarchical bounding volume, the Motion Oriented Bounding Box tree (MOBB tree). A MOBBtree stores space-time bounds of a motion clip. In crowd animation tests, MOBB trees performance improvements ranging between two and an order of magnitude.

Fast Motion Synthesis of Massive Number of Quadruped Animals

  • Sung, Man-Kyu
    • International Journal of Contents
    • /
    • v.7 no.3
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents a fast and practical motion synthesis algorithm for massive number of quadruped animals. The algorithm constructs so called speed maps that contain a set of same style motions but different speed from a single cyclic motion by using IK(Inverse Kinematics) solver. Then, those speed maps are connected each other to form a motion graph. At run time, given a point trajectory that obtained from user specification or simulators, the algorithm retrieves proper speed motions from the graph, and modifies and stitches them together to create a long seamless motion in real time. Since our algorithm mainly targets on the massive quadruped animal motions, the motion graph create wide variety of different size of characters for each trajectory and automatically adjusted synthesized motions without causing artifact such as foot skating. The performance of algorithm is verified through several experiments