• Title/Summary/Keyword: Massive

Search Result 3,737, Processing Time 0.041 seconds

Study on Massive Mobile Mapping Data Management Systems using Exif Tags and Data Synchronizations (Exif 태그 및 자료 동기화를 이용한 대용량 모바일 매핑 자료 관리체계 연구)

  • Woo, Hee-Sook;Kwon, Kwang-Seok;Ahn, Ki-Seok
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.67-77
    • /
    • 2009
  • Mobile mapping systems with CCD cameras, GPS and IMU etc. can acquire massive photos and geographic informations along by roads. But it is easy to involve many errors or omissions of images and informations about roads and facilities with various files. And there were contained any conflicts or non-consistencies in massive mobile mapping data which were acquired by multiple survey teams in various survey regions. As an image tag standard, Exif helps us to encapsulate the precise GPS times and essential informations in the header of JPEG files and uses with the identification code for consistent managements of massive mobile mapping data in this paper. And Systematic management systems with data synchronization technology manage more consistently massive photos and their information.

  • PDF

THE MASS DISTRIBUTION IN THE VICINITY OF THE GALACTIC CENTER

  • MCGREGOR PETER J.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.119-122
    • /
    • 1996
  • The case for a massive black hole in the center of the Galaxy is reassessed using improved modeling techniques and observational data. A dark mass of ${\~}{\times} 10^6$ Mo is present within 0.2 pc of the Galactic center. However, the available data can be modeled, without appealing to a massive black hole, using an extended distribution of dark stellar remnants (neutron stars and stellar mass black holes) provided that the stellar initial mass function in the central parsec is deficient in stars less massive than $\~$1 Mo. Such a situation may be a natural consequence of repeated gas build-up followed by starbursts in the central region. A clear distinction between this and the massive central black hole model cannot be made using red giant tracers outside 0.2 pc due to uncertainties in the radial velocity dispersion distribution. The cluster of massive early-type emission-line stars in the central parcsec more effectively probe the mass distribution close to Sgr A $\ast$, but their small number and partial rotational support complicate mass determinations. Proper motion determinations for stars within 0.5' of Sgr A$\ast$ may be the most effective means of unambiguously determining the mass distribution in the immediate vicinity of the Galactic center.

  • PDF

Pilot Assignment Algorithm for Uplink Massive MIMO Systems (상향링크 Massive MIMO 시스템에서 파일럿 할당 알고리즘)

  • Jang, Seokju;Kong, Han-Bae;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1485-1491
    • /
    • 2015
  • This paper introduces a new pilot assignment algorithm for uplink Massive multiple-input multiple-output (MIMO) systems. Since the conventional pilot assignment algorithm has the performance degradation compared to the optimal algorithm which performs the exhaustive search, we propose a new pilot assignment algorithm using Pre-determined Interference and Pre-determined Desired-term techniques. The proposed algorithm has the low complexity and guarantees negligible performance loss compared to the optimal algorithm. Simulation result verifies that the proposed algorithm achieves a large performance gain over the conventional algorithm.

Optimal Number of Base Station Antennas and Users in MF Based Multiuser Massive MIMO Systems (MF 기반 다중 사용자 Massive MIMO 시스템의 최적 기지국 안테나 수 및 사용자 수 분석)

  • Jung, Minchae;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.724-732
    • /
    • 2013
  • In this paper, we analyze a performance of multiuser massive multiple-input and multiple-output (MIMO) system. We derive the ergodic cell capacity based on a downlink frame structure and analyze the ergodic cell capacity with respect to the number of base station (BS) antennas and the number of users. This paper shows that the ergodic cell capacity is a concave function with respect to the number of BS antennas and the number of users, and also derives the optimal numbers of BS antennas and users for the maximum cell capacity. The simulation results verify the derived analyses and show that the derived numbers of BS antennas and users provide the maximum cell capacity.

Adaptive Channel Estimation Techniques for FDD Massive MIMO Systems (FDD Massive MIMO 시스템에서의 적응 채널 추정 기법)

  • Chung, Jinjoo;Han, Yonghee;Lee, Jungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1239-1247
    • /
    • 2015
  • In frequency-division duplex (FDD) massive multiple-input multiple-output (MIMO) system, the computational complexity of downlink channel estimation is proportional to the number of antennas at a base station. Therefore, effective channel estimation techniques may have to be studied. In this paper, novel channel estimation algorithms using adaptive techniques such as Kalman and least mean square (LMS) filters are proposed in a channel model with temporal and spatial correlation.

A Channel State Information Feedback Method for Massive MIMO-OFDM

  • Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.352-361
    • /
    • 2013
  • Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.

Massive RFID Tag Write Technique using Parallel Deployment of Readers (리더 병렬 배치를 이용한 대량 RFID 태그 쓰기 기법)

  • Lim, Young-Jun;Song, Ha-Joo;Kwon, Oh-Heum
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1493-1498
    • /
    • 2012
  • RFID technology plays an important role in building a ubiquitous environment. As RFID tags are widely used, it is necessary to enhance the performance of massive tag writes. A tag write tends to fail since it is performed through the weak radio wave communication. In this paper, we propose a write scheme that to enhance the performance of massive RFID tag writes. In proposed scheme, tag writes performed in parallel by multiple readers connected to a middleware. Write operations are distributed among readers and tags are written in groups. We show that proposed scheme can increase the success ratio of massive tag writes through experimental tests.

Scalable Graphics Algorithms (스케일러블 그래픽스 알고리즘)

  • Yoon, Sung-Eui
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.224-224
    • /
    • 2008
  • Recent advances in model acquisition, computer-aided design, and simulation technologies have resulted in massive databases of complex geometric data occupying multiple gigabytes and even terabytes. In various graphics/geometric applications, the major performance bottleneck is typically in accessing these massive geometric data due to the high complexity of such massive geometric data sets. However, there has been a consistent lower growth rate of data access speed compared to that of computational processing speed. Moreover, recent multi-core architectures aggravate this phenomenon. Therefore, it is expected that the current architecture improvement does not offer the solution to the problem of dealing with ever growing massive geometric data, especially in the case of using commodity hardware. In this tutorial, I will focus on two orthogonal approaches--multi-resolution and cache-coherent layout techniques--to design scalable graphics/geometric algorithms. First, I will discuss multi-resolution techniques that reduce the amount of data necessary for performing geometric methods within an error bound. Second, I will explain cache-coherent layouts that improve the cache utilization of runtime geometric applications. I have applied these two techniques into rendering, collision detection, and iso-surface extractions and, thereby, have been able to achieve significant performance improvement. I will show live demonstrations of view-dependent rendering and collision detection between massive models consisting of tens of millions of triangles on a laptop during the talk.

  • PDF

Pilot Sequence Assignment for Spatially Correlated Massive MIMO Circumstances

  • Li, Pengxiang;Gao, Yuehong;Li, Zhidu;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.237-253
    • /
    • 2019
  • For massive multiple-input multiple-output (MIMO) circumstances with time division duplex (TDD) protocol, pilot contamination becomes one of main system performance bottlenecks. This paper proposes an uplink pilot sequence assignment to alleviate this problem for spatially correlated massive MIMO circumstances. Firstly, a single-cell TDD massive MIMO model with multiple terminals in the cell is established. Then a spatial correlation between two channel response vectors is established by the large-scale fading variables and the angle of arrival (AOA) span with an infinite number of base station (BS) antennas. With this spatially correlated channel model, the expression for the achievable system capacity is derived. To optimize the achievable system capacity, a problem regarding uplink pilot assignment is proposed. In view of the exponential complexity of the exhaustive search approach, a pilot assignment algorithm corresponding to the distinct channel AOA intervals is proposed to approach the optimization solution. In addition, simulation results prove that the main pilot assignment algorithm in this paper can obtain a noticeable performance gain with limited BS antennas.

Environments of Galaxies and Their Effects on Galaxy Properties

  • Yoon, Yongmin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.38.2-38.2
    • /
    • 2019
  • In the history of universe, galaxies are consistently affected by surrounding medium and neighbor galaxies. These effects control galaxy evolution, making properties of galaxies diverse and dependent on environments. We investigate environments of various types of galaxies and how they affect galaxy properties, such as bar structures and galaxy sizes, etc. First, we present the observational evidence that bars can form from a cluster-cluster interaction. The evidence indicates that bars can form due to a large-scale violent phenomenon, and cluster-cluster interaction should be considered as an important channel for bar formation. Second, we discover for the first time that local early-type galaxies heavier than 1011.2 Msol show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20 - 40% larger in densest environments than in underdense environments. This result suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory. Lastly, we investigate environments of the most massive galaxies and extremely massive quasars. By doing so, we find that massive galaxies are a much better signpost for galaxy clusters than massive quasars.

  • PDF